

(German Limnological Society)

Erweiterte Zusammenfassungen der Jahrestagung 2013

der Deutschen Gesellschaft für Limnologie (DGL) und der deutschen und österreichischen Sektion der Societas Internationalis Limnologiae (SIL)

Potsdam-Berlin, 09. Sept. - 13. Sept. 2013

Impressum:

Deutsche Gesellschaft für Limnologie e.V.: vertreten durch das Präsidium der DGL; Lange Str. 9, 37181 Hardegsen. Erweiterte Zusammenfassungen der Tagung in Potsdam-Berlin 2013 Eigenverlag der DGL, Hardegsen 2014

Redaktion und Layout:

Geschäftsstelle der DGL, Dr. J. Bäthe, Dr. Eckhard Coring & Ralf Förstermann

Druck:

Hubert & Co. GmbH & Co. KG Robert-Bosch-Breite 6, 37079 Göttingen

ISBN-Nr. 978-3-9813095-5-3

Bezug über die Geschäftsstelle der DGL: Lange Str. 9, 37181 Hardegsen

Tel.: 05505-959046 Fax: 05505-999707

eMail: geschaeftsstelle@dgl-ev.de * www.dgl-ev.de

Kosten inkl. Versand: als CD-ROM €10.--; Druckversion: €25.--

DGL - Erweiterte Zusammenfassungen der Jahrestagung 2013 (Potsdam-Berlin) - Inhaltsverzeichnis

INHALT, GESAMTVERZEICHNIS NACH THEMENGRUPPEN	SEITE
D.CV. N	
DGL NACHWUCHSPREIS 2013	1
ATTERMEYER, K. & HP. GROSSART: Das Gute kommt von oben: Laub und der aquatische mikrobielle Kohlenstoffkreislauf	2
EIGEMANN, F., HP. GROSSART, X. CHANG & S. HILT: Interactions affect phytoplankton sensitivity towards allelochemicals	7
HIRSCH, P. E., C. OPPELT, R. ECKMANN & J. BEHRMANN-GODEL: Phänotypische Divergenz innerhalb einer Felchenform (Coregonus spp.) –Potenzial für zukünftige Artentstehung?	12
Posterprämierung 2013	17
Breidenbach, A., C. App, A. Grün, K. Hofmann, J. Meier & W. Manz: Auswirkung von Silbernanopartikeln auf die Struktur bakterieller Lebensgemeinschaften in Biofilmen aus Fließgewässer-Mesokosmen	18
LAU, M., M. ROTHE, A. KLEEBERG & M. HUPFER: A 'rusty' carbon sink in freshwater systems – How excess iron promotes sediment growth	24
KÖPPEL. CH., R. HANSMANN & W. SCHMITZ: Modellexperimente zur Sauerstoffverteilung in limnischen Systemen	29
Nitrolimit	34
BÖLLMANN, J., M. MARTIENSSEN & B. GRÜNEBERG: Vergleich der mikrobiellen Nitratreduktion in Sediment und Pelagial eines eutrophen Flusssees und eines mesotrophen geschichteten Sees	35
NIXDORF, B., J. RECKLEBE & G. LIPPERT: Nitrifikation im dimiktischen Scharmützelsee – Teil 1: Maximale Umsetzungen im Winter als Ökosystemdienstleistung	40
NIXDORF, B., M. NIEBISCH, G. LIPPERT & J. RECKLEBE: Nitrifikation im dimiktischen Scharmützelsee – Teil 2: Deep Nitrate Maximum als Ergebnis der sommerlichen hypolimnischen Ammoniumoxidation	45
RÜCKER, J., CH. HARRANDT & D. MIETHLING: Abschätzung von Phytoplanktonverlusten durch Muschelfiltration	51
THÜRMANN, J., B. GRÜNEBERG & B. NIXDORF: Umsätze und saisonale Dynamik relevanter Stickstoffkomponenten in einem eutrophen Flachsee (Langer See, Scharmützelseegebiet) – ein Bilanzansatz	57
TROMMER, G., M. POXLEITNER, E. BITZILEKIS, A. GOGALADZE, P. LORENZ & H. STIBOR: Influence of increased nitrogen deposition on lake systems – An experimental approach	62

INHALT, GESAMTVERZEICHNIS NACH THEMENGRUPPEN	SEITE
GRUNDWASSER, QUELLEN	66
HOHMANN, I. & P. MARTIN: Untersuchungen zur Besiedlung anthropogen beeinträchtigter Quellen in Schleswig-Holstein	67
$\label{lem:martin} \mbox{Martin, P. \& L. Wischniowsky: Kalktuffquellen: Ein FFH-Lebensraum ohne Charakterarten in der Limnofauna?}$	72
REISS, M.: Mind the summit trap? Kaltstenotherme Arten und die Folgen des Klimawandels im Mittelgebirge	77
SEEN	82
JORDAN, S., TH. HINTZE, CH. ENGELHARDT, M. ROTHE, F. GOHR & M. HUPFER: Zeitlich hoch aufgelöste Sonden-Messungen im Arendsee (Sachsen-Anhalt)	83
NEUMANN, C., A. KLEEBERG & M. HUPFER: Der Transport von partikulärem organischem Phosphor in einem geschichteten See	88
WEISS, H., B. GRÜNEBERG, G. ACKERMANN & B. NIXDORF: Einfluss des Sediments auf die Trophie in sechs eutrophen sächsischen Flachstauseen	93
WOLF, TH., TH. HEEGE, K. SCHENK & HB. STICH: Raum-zeitliche Variabilität von Phytoplankton im Bodensee und kleinen Seen – die Erfassung der patchiness von Algenverteilungen mittels verschiedener Verfahren	98
LIMNISCHE SEDIMENTBILDUNG	104
KLEEBERG, A.: Ursachen einer periodischen Mangan-Akkumulation in Sedimenten	105
ROTHE, M., A. KLEEBERG & M. HUPFER: Authigene Vivianitbildung als Folge einer Fällung mit Eisen	110
BENTHOS/BENTHISCHE LEBENSGEMEINSCHAFTEN	116
CORNELIUS, A. & P. MARTIN: Ökotoxikologische Untersuchungen an Wassermilben (Hydrachnidia, Acari)	117
VOßKUHL, M. & E. KIEL: Auf dem Weg zu einer ökologischen Grabenunterhaltung in Norddeutschland!	122
Umweltbildung	127
BRIEGER, H. & K. G. LEIPELT: Der Vampir des Meeres: Biologie des Meerneunauges vermitteln	128
HERTWECK, K., M. HUNN, A. SCHWARZ, S. SPÄTH & W. SCHMITZ: Zwerg und tierischer Schaumschläger: Selbstreinigung und Desinfektion mit "Oxi-Action" bei Plea leachi	132
KUBSCH, G. & L. TÄUSCHER: Sommerkurse für Umweltchemie und Umweltanalytik	137
SCHMITZ, W.: Umweltbildung interdisziplinär – Modellexperimente zur Gewässerversauerung (Experimentalvortrag)	143

INHALT, GESAMTVERZEICHNIS NACH THEMENGRUPPEN	SEITE
WASSERRAHMENRICHTLINIE UND GEWÄSSERMANAGEMENT	150
CRON, N., TH. ZUMBROICH & I. QUICK: Bewertung und Prognose des ökologischen Potentials von Bundeswasserstraßen – Gewässerkategorien, Gewässertypen und Ausweisungsgründe nach Wasserrahmenrichtlinie	151
$\label{eq:Dahm} Dahm, V.\ \&\ D.\ Hering:\ Where\ the\ wild\ things\ are-Konzept\ zur\ Ermittlung\ von\ Wiederbesiedlungsquellen\ im\ Einzugsgebiet$	157
FRANK, C., R. MÜHLBERGER, U. ARAUNER & H. FRANK: Twenty years of rehabilitation and management of a gravel pit lake in the vicinity of Ingolstadt, South Germany	162
GONSIORCZYK, TH., P. CASPER & P. KASPRZAK: Auswirkungen künstlicher und natürlicher Nährstoff- und Kalzitfällungen auf die Sedimentbeschaffenheit	167
Oldorff, S., E. Kiel, V. Krautkrämer, K. van de Weyer, J. Mählmann, R. Köhler, J. Köhler, S. Bernhard, J. Bruinsma, Th. Schiller, M. Eßler & T. Kirschey: Makrophytenkartierung in ausgewählten Seen Nordostdeutschlands	172
OSTENDORP, W. & J. OSTENDORP: Hydromorphologische Erfassung und Klassifikation von Seen in Brandenburg	178
Seibold, D., K. Schmieder, A. Kohler, E. Falusi, K. Penksza, G. H. Zeltner & U. Veit: Langzeitmonitoring der submersen Makrophyten in den Fließgewässern der Friedberger Au (bei Augsburg) im Zeitraum 1972 - 2012	183
TÄUSCHER, L.: 120 Jahre Langzeit-Untersuchungen der Besiedlung mit Algen im Großen Müggelsee (Berlin)	190
SONSTIGE THEMEN	196
DOST, P. & TH. WOLF: Repräsentativität und Inhomogenitäten zweidimensionaler Windfelder und deren Einfluss auf Simulationsergebnisse im Strömungsmodell DELFT FLOW 3D	: 197
FEHSE C., C. HERRMANN, E. SÖNMEZ, G. TAN & A. HAMM: Trophische Ebenen in Mittelgebirgsbächen unter dem Einfluss von Fischteichen	202
HORN, A.: Entwicklung eines dreidimensionalen, gekoppelten Modells zur Untersuchung der Wasserqualität des Bodensees	206
KUSBER, WH., S. VON MERING & J. HOLETSCHEK: Netzverfügbarkeit primärer Biodiversitätsdaten: Schritt für Schritt zur BioCASe-Anbindung limnologischer Datenquellen an das GBIF-Netzwerk	211
MÜLLER, D., TH. WARNEKE, T. RIXEN, M. MÜLLER, & J. NOTHOLT: Measuring dissolved greenhouse gases in peat-draining rivers with FTIR spectroscopy	216
SCHWEDER, H., G. HEMMER, CH. HUBER & R. WILMS: Umsiedlung einer Kreuzkröten-Population (Bufo calamita) mit Anlage eines Laichhabitates im westlichen Ruhrgebiet	220

DGL-NACHWUCHSPREIS 2013

ATTERMEYER, K. & H.-P. GROSSART: Das Gute kommt von oben: Laub und der aquatische mikrobielle Kohlenstoffkreislauf

EIGEMANN, F., H.-P. GROSSART, X. CHANG & S. HILT: Interactions affect phytoplankton sensitivity towards allelochemicals

HIRSCH, P. E., C. OPPELT, R. ECKMANN & J. BEHRMANN-GODEL: Phänotypische Divergenz innerhalb einer Felchenform (Coregonus spp.) –Potenzial für zukünftige Artentstehung?

Das Gute kommt von oben: Laub und der aquatische mikrobielle Kohlenstoffkreislauf

Katrin Attermeyer¹ & Hans-Peter Grossart^{2, 3}

1 Leibniz-Institut für Gewässerökologie und Binnenfischerei, Müggelseedamm 310, 12587 Berlin, attermeyer@igbberlin.de, 2 Leibniz-Institut für Gewässerökologie und Binnenfischerei, Alte Fischerhütte 2, 16775 Stechlin, hgross-art@igb-berlin.de, 3 Universität Potsdam, Institut für Biochemie und Biologie, 14469 Potsdam

Keywords: allochthoner Kohlenstoff, Bakterien, bakterielle Gemeinschaftszusammensetzung, Laubabbau

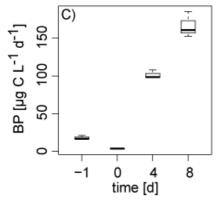
Einleitung

Global gesehen zirkuliert Kohlenstoff aktiv zwischen der Atmosphäre, der Geosphäre und der Hydrosphäre. Bisher wurden die Süßgewässer nur wenig in den globalen Kohlenstoffkreislauf einbezogen, obwohl sie hohe Einträge terrestrischen Materials aufweisen, die dort aktiv umgesetzt werden (Tranvik et al. 2009). Zudem werden in letzter Zeit ansteigende Konzentrationen von gelöstem organischem Kohlenstoff in den nördlichen Breiten gemessen (Monteith et al. 2007; Hansson et al. 2013), die. auf erhöhte terrestrische Einträge hinweisen. Der terrestrische (allochthone) Kohlenstoff umfasst sowohl gelöste Substanzen, ausgewaschen aus dem Wald-, Moor- oder Ackerboden, als auch partikuläres Material, wie Blätter, Pollen oder Holz (Cole et al. 2006). Bis zu 70% des allochthonen Kohlenstoffs wird in den kontinentalen Gewässern mineralisiert, bevor es in den Ozean exportiert wird (Cole et al. 2007; Tranvik et al. 2009; Aufdenkampe et al. 2011). Je kleiner ein Gewässer, desto höher ist sein allochthoner Eintrag im Verhältnis zur see-internen autochthonen Kohlenstoffproduktion durch die Primärproduzenten (Vander Zanden & Gratton 2011). Da die kleinen Seen (<1 km²) sehr zahlreich sind (Downing et al. 2006), ist es besonders wichtig, den Kohlenstoffumsatz in diesen Gewässern zu untersuchen.

Bakterien sind in der Lage den gelösten organischen Kohlenstoff aufzunehmen und entweder für die Atmung zur Energiegewinnung oder zum Aufbau von Biomasse zu verwenden (Carlson et al. 2007). Das Verhältnis beider Prozesse wird als bakterielle Wachstumseffizienz (BGE) bezeichnet und je höher die Wachstumseffizienz der Bakterien, desto mehr Kohlenstoff ist potenziell für höhere Nahrungsnetzebenen verfügbar (Azam et al. 1983). Die BGE wird durch verschiedene Faktoren, wie zum Beispiel Nährstoffverfügbarkeit, Substratqualität (del Giorgio & Cole 1998) oder Licht (Tranvik & Bertilsson 2001) beeinflusst, was sich wiederum auf den Kohlenstoffumsatz im See auswirkt. Das Ziel dieser Arbeit war es, die Rolle der Bakterien am Kohlenstoffumsatz, insbesondere Laub, in kleinen Flachseen zu untersuchen. Im Vordergrund standen dabei verschiedene Faktoren, die den Umsatz regulieren können und den bakteriellen Kohlenstoffabbau, die bakteriellen Aktivitäten und die bakterielle Gemeinschaftszusammensetzung beeinflussen. In dem erweiterten Abstract sollen die Ergebnisse der Doktorarbeit von Katrin Attermeyer vorgestellt werden, die in Teilen bereits veröffentlicht sind (siehe Zitate). Hier sollen daher die Ergebnisse aus einem Feld-Experiment und aus zwei Labor-Experimenten zusammengefasst werden.

Material und Methoden

Feld-Experiment


Das Feld-Experiment wurde am Schulzensee, einem kleinen Flachsee im Norden Brandenburgs durchgeführt. Eine Plastikplane teilt diesen See in zwei Hälften wodurch jeglicher Austausch von Wasser unterbunden wird. Direkt nach der Seeteilung wurden im November 2010 in eine Hälfte Maisblätter eingetragen, was den herbstlichen Laubfall simulieren sollte. Mehr Details dazu in Attermeyer et al. (2013a). Nach der Zugabe wurden die Nährstoff- und Kohlenstoffkonzentrationen über die Zeit gemessen und die bakterielle Protein Produktion im Wasser und Sediment (nach Simon & Azam 1989 für Wasser und Buesing & Gessner 2003 für Sediment) bestimmt.

Labor-Experimente

In Batch-Kulturen wurde der bakterielle Abbau von Blatt-Leachates und verschiedenen Konzentrationen von Phytoplankton-Lysaten gemessen (Attermeyer et al. 2013b). Wir haben nach Beendigung der Inkubation den umgesetzten gelösten Kohlenstoff über die Differenz der Anfangs- und Endkonzentrationen berechnet, die Qualität des Kohlenstoffs mittels Flüssigkeitschromatographie mit organischer Kohlenstoff-Detektion (LC-OCD, Huber et al. 2011) gemessen und die bakterielle Gemeinschaftszusammensetzung mittels der denaturierenden Gradienten-Gelelektrophorese (DGGE) bestimmt. Des Weiteren haben wir in kontinuierlichen Kulturen den Effekt von Licht und Phytoplankton-Lysaten auf den bakteriellen Abbau und die Gemeinschaftszusammensetzung untersucht (Attermeyer et al. 2013c). Die bakterielle Wachstumseffizienz wurde aus dem Biomasse-Zuwachs und dem umgesetzten gelösten Kohlenstoff bestimmt. Am Ende der Inkubation haben wir die bakterielle Gemeinschaftszusammensetzung analysiert (Illumina, Edwards et al. 2006).

Ergebnisse und Diskussion

Das Feld-Experiment zeigte nach Zugabe der Blätter eine Zunahme in der bakteriellen Produktion im Wasser aber nicht im Sediment (Abb. 1). Wir haben erhöhte Konzentrationen von gelöstem Kohlenstoff und Nährstoffen im Wasser gemessen, die auf das Leaching aus den Blättern zurückzuführen sind, was die Bakterien und den Kohlenstoffumsatz im Wasser stimulierte. Der umgesetzte Kohlenstoff aus den Blättern wird von den Bakterien in Biomasse eingebaut und steht somit potenziell den höheren Nahrungsnetzebenen zur Verfügung. Der Kohlenstoff der geleachten Blätter, die auf das Sediment absinken, wurde nicht von den Bakterien im Sediment inkorporiert. Dennoch zeigte sich, dass die Maisblätter mikrobiell abgebaut werden, ein Teil von den Makroinvertebraten genutzt wird und anschließend zu den Fischen gelangt (Scharnweber et al. 2013). Außerdem wird ein Teil des Kohlenstoffs der Blätter von den Blatt-assoziierten Mikroben inkorporiert. Der Weg des Blatt-Kohlenstoffs, der sowohl über die Blatt-assoziierten Mikroben als auch über die Makroinvertebraten im Sediment führt, ist somit viel kürzer als über die mikrobielle Schleife im Wasserkörper. Der Abbau der Blätter im Sediment kann also als sogenannte "benthische Abkürzung" gesehen werden, da sie viel effektiver ist.

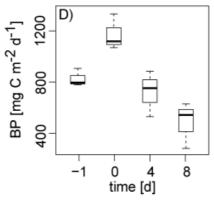


Abb. 1:Bakterielle Produktion (BP) gemessen im Wasser (C) und Sediment (D) im Litoral des Schulzensees kurz vor Zugabe der Maisblätter (-1), direkt nach (0) und nach 4 bzw. 8 Tagen (aus Attermeyer et al. 2013a).

Im ersten Laborexperiment wurden zwei verschiedene gelöste Kohlenstoff-Quellen genommen und deren Qualität analysiert. Das Buchenblatt-Leachate setzt sich zu ungefähr gleichen Teilen aus Huminstoffen und niedermolekularen Substanzen zusammen. Das Phytoplankton-Lysat weist zusätzlich noch ca. 20% hochmolekulare und daher weniger niedermolekulare Substanzen auf. Im direkten Vergleich identischer Mengen beider Kohlenstoff-Quellen haben wir festgestellt, dass sie relativ gut und mit einer hohen Effizienz von Bakterien abgebaut werden (Abb. 2). In den Ansätzen mit beiden Kohlenstoff-Quellen wurde bei erhöhter Zugabe von Phytoplankton-Lysaten ein erhöhter Abbau des Gesamt-Kohlenstoffs gemessen. Außerdem konnten wir zeigen, dass die Huminstoff-Fraktion den größten Anteil am Gesamt-Abbau ausmacht. Alle Ergebnisse deuten darauf hin, dass beide Kohlenstoff-Quellen sehr gut für Bakterien verfügbar sind und auch die allochthone Kohlenstoff-Quelle, die sonst eher als refraktär bezeichnet wird (Wetzel et al. 1995), gut abgebaut wird.

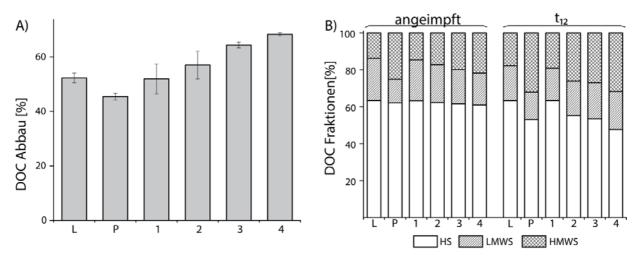


Abb. 2: Abbau des gelösten organischen Kohlenstoffs (DOC) (A) im Ansatz mit puren Buchen-Leachates (L), mit puren Phytoplankton-Lysaten (P) und in gemischten Ansätzen mit Buchen-Leachates und ansteigenden Konzentrationen von Phytoplankton-Lysaten (1 – 4). Zusammensetzung der DOC Quellen und der Mischungen zu Beginn (angeimpft) und am Ende der Inkubation (t12). Die DOC Fraktionen sind Huminstoffe (HS; in weiß), niedermolekulare Substanzen (LMWS; gestreift) und hochmolekulare Substanzen (HMWS; schraffiert) (aus Attermeyer et al. 2013b).

In den kontinuierlichen Kulturen haben wir erhöhte bakterielle Wachstumseffizienzen (BGE) nach Belichtung des allochthonen Erlen-Leachates gemessen. Es wird vermutet, dass die Belichtung des allochthonen Kohlenstoffs die Verfügbarkeit für die Bakterien erhöht und daher das Wachstum stimuliert (Sulzberger & Durisch-Kaiser 2009). In einem weiteren Experiment wurden jedoch keine erhöhten BGE nach Zugabe von Phytoplankton-Lysaten bestimmt.

In den beiden Labor-Experimenten haben wir jeweils am Ende der Inkubation die bakterielle Gemeinschaftszusammensetzung analysiert. Im ersten Experiment unterschieden sich die Misch-Inkubationen mit allochthonen Buchen-Leachates und Phytoplankton-Lysaten von den Inkubationen mit nur einer Kohlenstoff-Quelle. Das deutet darauf hin, dass die Mischung beider Kohlenstoff-Quellen die Komplexität des gesamten Kohlenstoff-Pools erhöht hat, was zu einer Veränderung der bakteriellen Gemeinschaft führte. In anderen Versuchen wurde auch eine Veränderung der bakteriellen Gemeinschaftszusammensetzung nach Zugabe niedermolekularer Substanzen gefunden (Landa et al. 2013). Im zweiten Experiment, in kontinuierlichen Kulturen, konnten wir Unterschiede zwischen den Misch-Inkubationen und zusätzlich auch zwischen den beiden Einzel-Inkubationen der Erlen-Leachates und den Phytoplankton-Lysaten finden. Die bakterielle Gemeinschaftszusam-

mensetzung wurde im zweiten Experiment mit einer hoch-auflösenden Sequenziermethode (Illumina, Edwards et al. 2006) analysiert, was es uns erlaubt genaue Aussagen über die Zusammensetzung der Bakteriengemeinschaften zu treffen. Daher konnten wir hier auch feinere Unterschiede herausarbeiten, die mittels der denaturierenden Gradienten Gelelektrophorese (DGGE) im ersten Experiment vermutlich nicht aufgedeckt wurden.

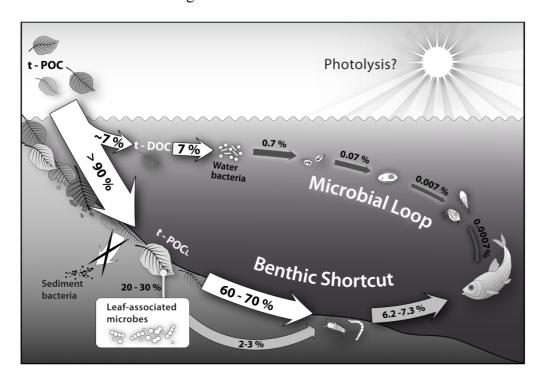


Abb. 3: Zusammenfassung der Ergebnisse des **Feldversuchs mit** Konsequenzen für das Nahrungsnetz. Die prozentualen Angaben beziehen sich auf den theoretischen Transfer von Blatt-Kohlenstoff mit der Annahme, dass 10% für die nächste Nahrungsnetzebene zur Verfügung steht (aus Attermeyer et al. 2013a).

Zusammenfassung

Diese Arbeiten geben einen Einblick in den bakteriellen Kohlenstoffumsatz von Blättern und deren Leachates. Dabei haben wir einerseits den Blattabbau anhand von Maisblättern im See verfolgt. Die Leachates wurden effektiv von den Bakterien in der Wassersäule umgesetzt. Der Großteil des geleachten Kohlenstoffs geht dabei über die die mikrobielle Schleife verloren und es gelangt nur ein geringer Anteil des Blatt-Kohlenstoffs zu den Fischen (Abb. 3). Die abgesunkenen Blätter hingegen stimulieren die Sediment-Bakterien nicht, werden aber im Sediment von den Blatt-assoziierten Bakterien und/oder den Makroinvertebraten konsumiert. Damit stehen sie den Fischen direkt zur Verfügung (Abb. 3), was wir als "benthische Abkürzung" bezeichnen. Zusätzlich konnten wir die hohe Verfügbarkeit allochthoner Blatt-Leachates in Labor-Experimenten bestätigen. Dabei haben wir festgestellt, dass Licht den Umsatz positiv beeinflusst, die Zugabe von Phytoplankton-Lysaten aber nicht. Dafür verändert sich die bakterielle Gemeinschaftszusammensetzung, wenn sich die Komplexität des Substrats erhöht, also Blatt-Leachates und Phytoplankton-Lysate gemischt wurden. Das heißt, die Qualität des organischen Kohlenstoff-Pools spielt eine wichtige Rolle sowohl beim Umsatz als auch für die bakterielle Gemeinschaftszusammensetzung in aquatischen Systemen.

Danksagung

Herzlichen Dank an alle Kollegen der Abteilung 3 des Instituts für Gewässerökologie und Binnenfischerei, speziell der Arbeitsgruppe "Aquatische Mikrobielle Ökologie" und den Terralacern, die mit uns im Projekt zusammen gearbeitet haben. Diese Untersuchung entstand im Rahmen einer Doktorarbeit im Terralac Projekt und wurde finanziert vom Pakt für Innovation und Wissenschaft der Gottfried Wilhelm Leibniz-Gemeinschaft.

Literatur

- Attermeyer, K., Premke, K., Hornick, T., Hilt, S., Grossart, H.-P. (2013): Ecosystem-level studies of terrestrial carbon reveal contrasting bacterial metabolism in different aquatic habitats. Ecology doi: 10.1890/13-0420.1.
- Attermeyer, K., Hornick, T., Kayler, Z. E., Bahr, A., Zwirnmann, E., Grossart, H.-P., Premke, K. (2013b): Enhanced bacterial decomposition with increasing addition of autochthonous to allochthonous carbon but no effect on bacterial community composition. Under review in Biogeosciences.
- Attermeyer, K., Tittel, J., Allgaier, M., Frindte, K., Wurzbacher, C., Hilt, S., Kamjunke, N., Grossart, H.-P. (2013): Effects of light and autochthonous carbon additions on microbial turnover of allochthonous organic carbon and community composition. Eingereicht bei FEMS Microb. Ecol.
- Aufdenkampe, A. K., Mayorga, E., Raymond, P. A., Melack, J. M., Doney, S. C., Alin, S. R., Aalto, R. E., Yoo, K. (2011): Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front. Ecol. Environ. 9: 53-60.
- Azam, F., Fenchel, T., Field, J. G., Graf, J. S., Meyer-Reil, L. A., Thingstad, F. (1983): The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257-263.
- Buesing, N., Gessner, M. O. (2003): Incorporation of radiolabeled leucine into protein to estimate bacterial production in plant litter, sediment, epiphytic biofilms, and water samples. Microb. Ecol. 45: 291-301.
- Carlson, C. A., del Giorgio, P. A., Herndl, G. J. (2007): Microbes and the dissipation of energy and respiration: from cells to ecosystems. Oceanography 20: 89-100.
- Cole, J. J., Carpenter, S. R., Pace, M. L., Van de Bogert, M. C., Kitchell, J. L., Hodgson, J. R. (2006): Differential support of lake food webs by three types of terrestrial organic carbon. Ecol. Lett. 9: 558-568
- Cole, J. J., Prairie, Y. T., Caraço, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., Middelburg, J. J., Melack, J. (2007): Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10: 171-184.
- Del Giorgio, P. A., Cole, J. J. (1998): Bacterial growth efficiency in natural aquatic systems. Anu. Rev. Ecol. Syst., 29, 503-541.
- Downing J. A., Prairie, Y. T., Cole, J. J., Duarte, C. M., Tranvik, L. J., Striegl, R. G., McDowell, W. H., Kortelainen, P., Caraço, N. F., Melack, J. M., Middelburg, J. J. (2006): The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr. 51: 2388-2397.
- Edwards, R.A., Rodriguez-Brito, B., Wegley, L., Haynes, M., Breitbart, M., Peterson, D.M., Saar, M.O., Alexander, S., Alexander, E.C., Rohwer, F. (2006): Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genom. 7: 57.
- Hansson, L.-A., Nicolle, A., Granéli, W., Hallgren, P., Kritzberg, E. S., Persson, A., Björk, J., Nilsson, P. A., Brönmark, C. (2013): Food-chain length alters community responses to global change in aquatic systems. Nat. Clim. Change 3: 228-233.
- Landa, M., Cottrell, M. T., Kirchman, D. L., Blain, S. Obernosterer, I. (2013): Changes in bacterial diversity in response to dissolved organic matter supply in a continuous culture experiment. Aquat Microb Ecol 69: 157-168.
- Monteith, D. T., Stoddard, J. L., Evans, C. D., de Wit, H. A., Forsius, M., Høgåsen, T., Wilander, A., Skjelkvåle, B. L., Jeffries, D. S., Vuorenmaa, J., Keller, B., Kopácek, J., Vesely, J. (2007): Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450: 537-541.
- Scharnweber, K., Syväranta, J., Hilt, S., Brauns, M., Vanni, M. J., Brothers, S., Köhler, J., Knežević-Jarić, J., Mehner, T. (2013): Whole-lake experiments reveal the fate of terrestrial particulate organic carbon in benthic food webs of shallow lakes. Accepted in Ecology.
- Simon, M., Azam, F. (1989): Protein content and protein synthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser. 51: 201-213.
- Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl, R. G., Ballatore, T. J., Dillon, P., Finlay, K., Fortino, K., Knoll, L. B., Kortelainen, P. L., Kutser, T., Larsen, S., Laurion, I., Leech, D. M., McCallister, S. L., McKnight, D. M., Melack, J. M., Overholt, E., Porter, J. A., Prairie, Y., Renwick, W. H., Roland, F., Sherman, B. S., Schingler, D. W., Sobek, S., Tremblay, A., Vanni, M. J., Verschoor, A. M., von Wachenfeldt, E., Weyhenmeyer, G. A. (2009): Lakes and impoundments as regulators of carbon cycling and climate. Limnol. Oceanogr. 54: 2298-2314.
- Vander Zanden, M. J., Gratton, C. (2011): Blowin' in the wind: reciprocal airborne carbon fluxes between lakes and land. Can. J. Fish. Aquat. Sci. 68: 170-182.
- Wetzel, R. G., Hatcher, P. G., Bianchi, T. S. (1995): Natural photolysis by ultraviolet irradiance of recalcitrant dissolved organic matter to simple substrates for rapid bacterial metabolism. Limnol. Oceanogr. 40: 1369-1380.

Deutsche Gesellschaft für Limnologie (DGL) Erweiterte Zusammenfassungen der Jahrestagung 2013 (Potsdam-Berlin), Hardegsen 2014

Interactions affect phytoplankton sensitivity towards allelochemicals

Falk Eigemann¹, Hans-Peter Grossart², Xuexiu Chang³ & Sabine Hilt¹

1Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, eigemann@igbberlin.de, hilt@igb-berlin.de, 2University of Potsdam, Maulbeerallee 2, 14469 Potsdam, grossart@uni-potsdam, 3Yunnan University, Kunming 650091, PR China, changxx@126.com

Keywords: allelopathy, phytoplankton, interactions, bacteria, tannic acid

Introduction

Shallow lakes are characterized by two strongly contrasting regimes: the clear water-regime which is dominated by submerged macrophytes and the turbid regime which is dominated by the phytoplankton (Scheffer et al. 1993). Submerged macrophytes stabilize the clear-water regime of shallow lakes in manifold ways (Scheffer 1998): They provide refuge for small fish and phytoplankton grazing zooplankton, they reduce light and nutrient availability and hence phytoplankton growth, and they increase phytoplankton sinking losses due to decreased turbulence. One direct factor that is supposed to stabilize the clear water regime is the release of allelopathic substances by macrophytes that inhibit growth and development of phytoplankton (Wium-Andersen et al. 1983). Allelopathy is defined as the "interaction between plants or microorganisms" (Molisch 1937), and is a well understood process in terrestrial environments (Kruse et al. 2000), but evaluation in aquatic environments at the ecosystem scale is hard to achieve and a current lack of knowledge is apparent (Gross et al. 2007).

One of the crucial aspects for a reliable evaluation of allelopathic effects in aquatic environments is the knowledge on factors that influence the sensitivity of phytoplankton. Here, we report the influence of two biotic interactions (associations between bacteria and phytoplankton and interactions between different target phytoplankton groups) on the sensitivity of phytoplankton towards allelochemicals.

Different phytoplankton groups and species as well as xenic and axenic cultures of the same phytoplankton species were found to exhibit differences in their sensitivities towards allelochemicals, and thus a modulation of allelopathic effects by bacteria seems likely (Körner & Nicklisch 2002; Bauer et al. 2010). Therefore, we hypothesize that (i) bacteria are species-specifically associated to phytoplankton (a prerequisite that associated bacteria are involved into specific sensitivities of phytoplankton species) and not determined by the environmental conditions, and (ii) that a non-sensitive phytoplankton species harbors a higher share of potentially allelochemical degrading bacteria as compared to a sensitive species.

Cyanobacteria, whereof numerous species can form toxic blooms, were found to be more sensitive to allelochemicals compared to other phytoplankton groups (Hilt & Gross 2008), which raised the hope for an effective application of allelopathy for water quality improvements. Test conditions, however, mostly refer to single species and neglect natural conditions, where interactions between different allelochemical acceptors take place. We hypothesize (iii) that a sensitive cyanobacterium

will be still suppressed by allelochemicals if it interacts with a non-sensitive green algal species under the influence of allelochemicals.

Material and Methods

Species-specific bacterial associations

We exposed xenic laboratory cultures of the green alga *Desmodesmus armatus* and the diatom *Stephanodiscus minutulus* in a lake which drastically changed the environmental conditions from lab to field conditions. To test if bacteria are species-specifically associated to the algae or if the bacterial associations are mainly determined by environmental conditions, the experimental set-up allowed for colonization of the algae cultures by lake bacteria. Cultures were filtered before and after exposure, and the directly attached fraction and free bacterial fraction (which is still associated with the algae) were separated by different pore sizes of the filters. Afterwards, the bacterial community composition (BCC) was determined to detect changes in BCC following the exposure by comparing banding patterns of DGGE analyses of the bacterial 16S rDNA. Bacterial phylotypes associated with the algae and additional bacterial phylotypes from known allelochemical degrading bacteria (taken from GenBank) were phylogenetically aligned based on their rRNA gene sequence, to test if bacteria associated to algae consist of potential allelochemical degraders by affiliating together with known allelochemical degraders (for details see Eigemann et al. 2013).

Interactions between cyanobacteria and green alga under allelochemical exposure

Cultures of the green alga *Desmodesmus armatus* and the cyanobacterium *Microcystis aeruginosa* were cultured in single species cultures, in mixed cultures (with different initial chlorophyll a shares of 1:3, 1:1, and 3:1), in controls as well as under the influence of allelochemicals for three days. As allelochemical treatments, the polyphenolic tannic acid (TA) was added and co-existence experiments with the allelopathically macrophyte *Myriophyllum verticillatum* were conducted. The ratios from *D. armatus* to *M. aeruginosa* were calculated based on the chlorophyll a values obtained with a Phyto-PAM fluorometer (Fa. Walz, Effeltrich, Germany) (for details see Chang et al. 2012)..

Results and Discussion

Species-specific bacterial associations

We found highly species-specific bacterial associations with the two tested algal species (Fig. 1). BCCs of both algal species clustered separately, each showing big differences between the bacterial fractions (Fig. 1). Separation between the free and the attached bacterial fraction associated to algae was shown before by Rösel et al. (2012), and could thus be corroborated. Neither *D. armatus*, nor *S. minutulus* revealed changes in any bacterial fraction in their associated BCC due to changes in the environmental conditions. Thus the expected replacement of laboratory bacteria by bacteria adapted to the conditions in the lake was not observed. Changes such as pH, temperature, dissolved organic matter, solar radiation were not strong enough to change the BCC in any of the algal cultures (Eigemann et al. 2013). This finding contrasts other studies that found specific parameters such as temperature, pH, alkalinity (Allgaier & Grossart 2006, Kampe et al. 2010) to be important factors for BCC in field observations. In our case, it is evident that effects of the algal species may have overruled those of environmental conditions for maintenance and establishment of the BCC. The bacterial sequences obtained from the algal cultures revealed many different bacterial groups that have been found in association with algae before (Grossart et al. 2005).

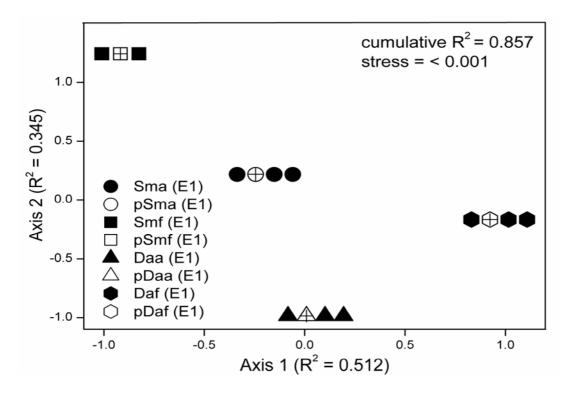


Figure 1: NMDS ordinations based on the presence or absence of bacterial band classes in DGGE analysis. Legend codes: p = before exposure, Da = Desmodesmus armatus, Sm = Stephanodiscus cus minutulus, f = free bacterial fraction, a = attached bacterial fraction. A + indicates the centre of overlapping plots which are displayed next to it. Modified after Eigemann et al. (2013).

We chose the rather insensitive *D. armatus* and the sensitive *S. minutulus* for our experiments, and hypothesized that the sensitivity towards allelochemicals is related to their bacterial associations. However, both algal species showed a high share of potential allelochemical degrading bacteria, and consequently degradation and inactivation of allelochemicals seems to be likely. A significant contribution of distinct, species-specifically associated bacteria to the sensitivity towards allelochemicals in contrast, seems unlikely (Eigemann et al. 2013).

Interactions between cyanobacteria and green alga under allelochemical exposure

When assessing the impacts of macrophyte allelochemicals on phytoplankton mixtures, at first, interactions between the phytoplankton without allelochemical exposure should be investigated. *D. armatus* had no effect on *M. aeruginosa* at low growth rates of the latter, but inhibited the growth of *M. aeruginosa* at higher growth rates (data not shown, Chang et al. 2012). Contrary, *M. aeruginosa* had a negative impact on *D. armatus* at any growth rate (data not shown, Chang et al. 2012). The exposure to allelochemicals impacted the interaction between both of the phytoplankton species, favouring the cyanobacterium (Fig. 2). An increasing share of *D. armatus* turned the inhibitory effect of allelochemicals on *M. aeruginosa* into an enhancement, but *D. armatus* showed a stronger inhibition in the presence of *M. aeruginosa* if allelochemicals were present (Fig. 2).

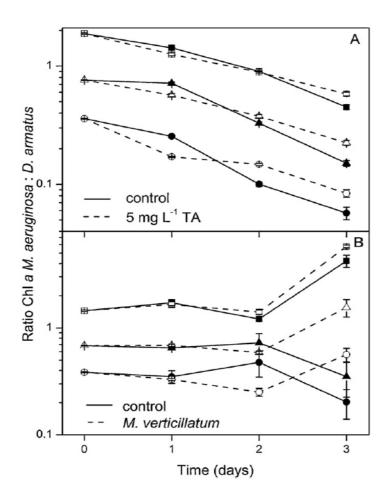


Figure 2: Ratios of chlorophyll a (Chl a) of M. aeruginosa (Ma) and D. armatus (Da) in three different mixtures with different initial compositions (squares: 75% Ma, 25% Da, triangles 50% Ma, 50% Da, circles: 25% Ma 75% Da) grown for three days in absence (control) and presence of 5 mg L-1 tannic acid (A) or M. verticillatum (B). Error bars show standard errors (n = 4). Modified after Chang et al. (2012).

Generally, cyanobacteria are considered being more sensitive towards allelochemicals compared to green algae (Hilt & Gross 2008, Zhu et al. 2010). Due to the higher sensitivity of the cyanobacterium, we hypothesized that *M. aeruginosa* will be still supressed by allelochemicals when *D. armatus* is present. Contrary to our hypothesis, growth rates of *M. aeruginosa* were enhanced under the influence of allelochemicals in interaction with the green alga *D. armatus* (Fig. 2). Consequently, assessments on ecological impacts of allelopathic effects of macrophytes on specific phytoplankton species should consider interactions between different target phytoplankton groups and species.

Conclusions

Our studies demonstrate that biotic interactions modify phytoplankton sensitivity towards allelochemicals. We could show that the algal host overrules changes in environmental conditions for the establishment and maintenance of bacterial associations. These specific associations have important applications for numerous processes, as remineralization of nutrients and organic matter dynamics. The species-specifically associated bacteria, however, did not contribute to the different sensitivities towards allelochemicals of both tested algal species. Still, it is clear that bacteria are involved in the modulation of allelopathic effects. We could also show that the inhibitory effects of allelochemicals on a common cyanobacterium were reversed into an enhancement if the cyanobacterium interacted with a green alga. Future studies should consequently be careful by extrapolating results of single species tests to the ecosystem scale. Generally, possible biotic interactions should be taken into account when assessing phytoplankton sensitivities towards all kinds of stressors.

Acknowledgement

The present article is an outcome of the PhD project "Allelopathic effects of submerged macrophytes on phytoplankton: *in situ* relevance, bacterial mediation and new modes of action", conducted by Falk Eigemann. We thank the German Research Foundation for funding (HI 1380/3-1), Ivette Salka for phylogenetic analyses, the chemical lab of the IGB Berlin for nutrient analyses, Elke Mach, Solvig Pinnow and Monika Degenbrodt from the IGB Neuglobsow for molecular analyses, and Tom Shatwell for constructive comments.

References

- Bauer, N., Grossart, H-P., Hilt, S. (2010) Effects of bacterial communities on the sensitivity of phytoplankton (*Stephanodiscus minutulus*) and *Desmodesmus armatus*) to tannic acid. Aquat Microb Ecol 59: 295-306.
- Eigemann, F., Salka, I., Hilt, S., Grossart, H-P. (2013) Bacterial community composition associated with freshwater algae: specificity vs. dependency on environmental conditions and source community. FEMS Microbiol Ecol 83: 650-663.
- Chang, X., Eigemann, F., Hilt, S. (2012) Do macrophytes support harmful cyanobacteria? Interactions with a green alga reverse the inhibiting effects of macrophyte allelochemicals on *Microcystis aeruginosa*. Harmful algae 19: 76-84.
- Grossart, H-P., Levold, F., Allgaier, M., Simon, M., Brinkhoff, T. (2005) Marine diatom species harbour distinct bacterial communities. Environ Microbiol 7: 860-873.
- Hilt, S., Gross, E.M. (2008) Can allelopathically active submerged macrophytes stabilise clearwater states in shallow eutrophic lakes? Bas Appl Ecol 9: 422-432.
- Körner, S., Nicklisch, A. (2002) Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes. J Phycol 38: 862-871.
- Scheffer, M., Hosper, S.H., Meijer, M.L., Moss, B., Jeppesen, E. (1993) Alternative equilibria in shallow lakes. Trends Ecol Evol 8: 275-279.
- Zhu, J., Liua, B., Wang, J., Gao, Y., Wua, Z. (2010) Study on the mechanism of allelopathic influence on cyanobacteria and chlorophytes by submerged macrophyte (*Myriophyllum spicatum*) and its secretion. Aquat Toxicol 98: 196–203.
- Allgaier, M., Grossart, H-P. (2006) Seasonal dynamics and phylogenetic diversity of free-living and particle-associated bacterial communities in four lakes in northeastern Germany. Aquat Microb Ecol 45: 115-128.
- Kampe, H., Dziallas, C., Grossart, H-P., Kamjunke, N. (2010) Similar bacterial community composition in acidic mining lakes with different pH and lake chemistry. Microb Ecol 60: 618-627.
- Rösel, S., Allgaier, M., Grossart, H-P. (2012) Long-term characterization of free-living and particle-associated bacterial communities in Lake Tiefwaren reveals distinct seasonal patterns. Microb Ecol 64: 571-583.
- Gross, E.M., Hilt, S., Lombardo, P., Mulderij, G. (2007) Searching for allelopathic effects of submerged macrophytes on phytoplankton State of the art and open questions. Hydrobiologia 584: 77-88.
- Kruse, M., Strandberg, M., Strandberg, B. (2000) Ecological effects of allelopathic plants a review. NERI Technical Report 315.
- Molisch, H. (1937) Der Einfluss einer Pflanze auf die andere Allelopathie. Gustav Fischer Verlag, Jena. Scheffer, M. (1998) Ecology of shallow lakes. Chapman and Hall, London.
- Wium-Andersen, S., Anthoni, U., Houen, G. (1983) Elemental sulphur, a possible allelopathic compound from *Ceratophyllum demersum*. Phytochemistry 22: 2613.

Deutsche Gesellschaft für Limnologie (DGL) Erweiterte Zusammenfassungen der Jahrestagung 2013 (Potsdam-Berlin), Hardegsen 2014

Phänotypische Divergenz innerhalb einer Felchenform (*Coregonus spp.*) –Potenzial für zukünftige Artentstehung?

Philipp E. Hirsch¹, Claus Oppelt, Reiner Eckmann² & Jasminca Behrmann-Godel²

Keywords: Phänotypische Plastizität, Re-oligotrophierung, Einnischung, Litoral, Pelagial

Einleitung

Felchen als Modellorganismen für innerartliche Divergenz

Eine der wichtigsten Gruppen von Modellorganismen für die Erforschung der Artentstehung sind die Felchen der Alpenseen. Das Vorkommen eines benthischen und eines pelagialen Lebensraums in Seen kann die Entwicklung von jeweils auf diesen Lebensraum spezialisierten Formen begünstigen. Felchenseen sind bekannt dafür, dass in ihnen oft phänotypisch unterschiedliche Formen vorkommen: pelagische Felchen, die sich von Zooplankton ernähren und benthische Felchen, die sich von Makrozoobenthos ernähren.

Es besteht ein klarer Zusammenhang zwischen dem Vorkommen solcher spezialisierter Formen und einer bimodalen Ressourcenverteilung zwischen Lebensräumen des Sees. Nur durch eine klare Trennung von Ressourcen wie z.B. dem Benthos des Litorals und dem Nekton des Pelagials wird eine spezifische Anpassung an eine dieser Ressourcen energetisch lohnenswert für Frassräuber. Bei einer solchen bimodalen Verteilung wird disruptive Selektion die an die extremen Enden der Ressourcenverteilungen angepassten Phänotypen begünstigen. Phänotypen, die in ihrer Merkmalsausprägung im Mittel zwischen den beiden Extremen liegen, werden dagegen ausselektiert (Abb. 1a, Selektionsregime).

Die bimodale Verteilung der Ressourcen und dadurch die Voraussetzung zur Spezialisierung innerhalb eines Ökosystems kann jedoch durch anthropogene Einflüsse verändert werden. Zum Beispiel wird der Verlust an spezialisierten Felchenformen in vielen Seen der Eutrophierung dieser Seen zugeschrieben. Die meisten eutrophierten Seen zeigen eine dramatische Zunahme der Zooplanktondichten. Für das Benthos gilt dies zwar nicht im gleichen Masse, die Artenzusammensetzung der bodenlebenden Organismen verändert sich jedoch ebenfalls stark. In Zeiten des Überflusses an Zooplankton ist die Spezialisierung auf das Benthos energetisch nicht mehr lohnenswert. Sie bringt keinen Fitnessgewinn mehr, wenn Nahrung im Pelagial im Überfluss vorhanden ist. Dieser Verlust der bimodalen Ressourcenverteilung führte längerfristig zum Verschwinden von benthisch spezialisierten Phänotypen in zwölf von Vonlanthen et al. (2012) untersuchten Felchenseen der Alpenregion. Von den vormals in Benthos- und Freiwasserspezialisten aufgetrennten Felchenformen blieben nur noch wenige, phänotypisch eher ans Pelagial angepasste Formen übrig.

Der anthropogene Einfluss auf Ökosysteme kann jedoch auch wieder verringert und die ursprünglichen Bedingungen wiederhergestellt werden. In vielen Seen der Alpenregion hat sich der Prozess der Eutrophierung seit Ende des letzten Jahrhunderts umgekehrt in einen Prozess der Reoligotrophierung. In vielen Seen ist durch diese Re-oligotrophierung die Bimodalität der Ressour-

¹ Programm MGU, Universität Basel, Vesalgasse 1, CH-4051 Basel, ² Limnologisches Institut, Universität Konstanz, Mainaustr. 52, 78464 Konstanz, behrmann-godel@uni-konstanz.de

cen zwischen Benthos und Pelagial heute wieder vorhanden. Unter diesen wiederhergestellten Bedingungen könnte nun die disruptive Selektion solche Phänotypen, die mittlere Merkmalsausprägungen zeigen. wieder ausselektieren und somit wieder benthisch spezialisierte Felchenformen begünstigen. Langfristig könnte dies eine Wiederkehr der Biodiversität der Felchen bedeuten.

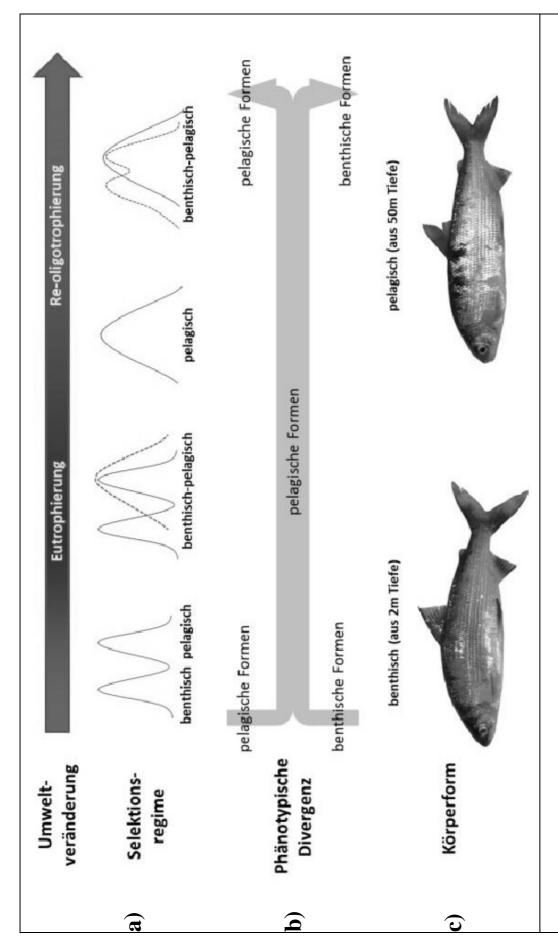
In unserer Untersuchung versuchen wir, Hinweise darauf zu finden, dass die Divergenz innerhalb der Felchen eines ehemals eutrophen Sees wieder zurückkehrt. Um zu erforschen ob sich in einem re-oligotrophierten Ökosystem noch Reste der alten Formenvielfalt oder bereits neue phänotypische Spezialisierungsmerkmale finden lassen, untersuchten wir die Gangfische (*Coregonus marcophthalamus*) des Bodensees.

Material und Methoden

Die Felchenformen des Bodensees

Vor der Eutrophierung in der zweiten Hälfte des zwanzigsten Jahrhunderts fand man im Bodensee noch die für viele Felchenseen typische Aufteilung in benthische und pelagische Felchen. Die beiden benthischen Formen waren der Kilch *C. gutturosus* und das Sandfelchen *C. arenicolus*. Die beiden pelagischen Formen waren das Blaufelchen *C. wartmanni* und der Gangfisch *C. macrophthalmus*. Alle vier Formen konnten anhand ihrer Kiemenreusendornen und anhand ihrer Laichplätze und -zeiten klar unterschieden werden. Durch die Eutrophierung jedoch verlor der See einen Teil seiner Felchenvielfalt. Der Kilch verschwand völlig und gilt heute als ausgestorben. Die Fangzahlen der Sandfelchen brachen mit der Eutrophierung ein und seitdem werden nur noch vereinzelt Exemplare gefangen. Der Gangfisch und das Blaufelchen wurden und werden jedoch in fast gleichbleibender Häufigkeit von den hiesigen Berufsfischern gefangen.

Sowohl Gangfisch als auch Blaufelchen sind vorwiegend Zooplanktonfresser. Historische Aufzeichnungen der Mageninhalte von Gangfischen jedoch berichten auch von Benthosorganismen wie z.B. Chironomiden, die in den Mägen von Gangfischen gefunden wurden. Der Gangfisch ist ein Bodenlaicher, während das Blaufelchen ein Freiwasserlaicher ist; somit sind die beiden Formen anhand ihrer Laichgewohnheiten klar zu trennen. In den letzten Jahren nachdem der See zunehmend wieder oligotroph geworden ist, berichten Berufsfischer, dass sich die Laichgründe der Gangfische in ihrer Ausdehnung zunehmend verändern. Nachdem sie während der Eutrophierung vor allem zwischen 5 und 10m gelaicht haben, sind sie jetzt wieder flacher (<5m Tiefe) und tiefer (bis zu 50m Tiefe) beim Laichgeschäft zu fangen, so wie auch zu Zeiten vor der Eutrophierung.


Von Felchen ist bekannt, dass Unterschiede in der Laichtiefe oft einhergehen mit einer unterschiedlichen Nahrungsspezialisierung (Vonlanthen et al. 2012). Die Gangfische des Bodensees erschienen uns somit als vielversprechender Modellorganismus, um die phänotypische Vielfalt innerhalb einer Felchenpopulation im historischen Kontext der Re-oligotrophierung zu untersuchen.

Untersuchungsgebiet und Probennahme

Im November 2009 wurden Gangfische aus drei Tiefen (2, 25 und 50m) nahe dem Limnologischen Institut der Universität Konstanz gefangen. Auf jeder Tiefenstufe wurden drei Kiemennetze mit 32, 38 und 44mm Maschenweite für eine Nacht parallel zum Ufer gesetzt.

Analyse der Körperform und der Kiemenreusendornenanzahl

Aus jeder Tiefenstufe wurden 30 Individuen zufällig ausgewählt und fotografiert. Nach Festlegung von 16 Landmarks (die die Körperform der Tiere beschreiben) wurde eine multivariate geometrische

und benthischen Formen bleiben nur die eher pelagisch angepassten erhalten. Im re-oligotrophierten See jedoch können sich die Formen wieder getrennte Fitnessmaxima. b) Dieser Prozess spiegelt sich in der phänotypischen Divergenz wieder: von anfangs deutlich getrennten pelagischen fangs klar getrennten Fitnessmaxima zu einem einfachen ohne Fitnesstal. Im Zuge der Re-oligotrophierung jedoch entstehen wieder deutlicher aufspalten. In d) sind Fotos der benthischen und pelagischen Gangfischformen gezeigt, welche im Rahmen dieser Untersuchung gefangen wur-Abb. 1: Graphische Zusammenfassung der Untersuchung. a) Das Selektionsregime ändert sich (angedeutet durch gestrichelte Linien) von an-

Körperformanalyse nach Rohlf (1993) durchgeführt und mit Hilfe einer Diskriminanten Funktionsanalyse (DFA) wurden maximale Unterschiede entlang der *a priori* als Diskriminanten festgelegten
drei Tiefenstufen ermittelt. Die Anzahl der Kiemenreusendornen wurde auf dem rechten Kiemenbogen jedes der jeweils 30 Individuen pro Tiefenstufe gezählt. Zusammen mit der Analyse der
stabilen Isotopen N¹⁵ und C¹³ wurden dadurch Unterschiede in der Nahrungsnische untersucht.
Ausserdem wurden Mikrosatellitenanalysen (12 loci) zur genetischen Unterscheidung der Felchen
der verschiedenen Tiefenstufen durchgeführt. Eine genaue Darstellung der Methoden und Ergebnisse sind unter http://onlinelibrary.wiley.com/doi/10.1111/eva.12087/full im frei zugänglichen und
gratis herunterladbaren Originalartikel dieser Untersuchung nachzulesen (Hirsch et al. 2013).

Ergebnisse

Divergenz der Felchen verschiedener Tiefenstufen

Die multivariate Analyse ergab, dass die Körperform der Gangfische sich je nach Tiefenstufe, in der sie gefangen wurden, unterscheidet. Diese Unterschiede ließen sich auch mit bloßem Auge an den Tieren erkennen (Abb. 1d, Körperform), wobei die deutlichsten Unterschiede zwischen den flach gefangenen und den beiden tiefer gefangenen Gruppen festzustellen waren. Es wurde ein Zusammenhang zwischen den morphologischen und genetischen Unterschieden der Felchen gefunden. Dabei fanden sich die größten genetischen Unterschiede jeweils bei Fischen, die sich auch morphologisch am stärksten unterschieden.

Die Gangfische, die in 2m Tiefe gefangen wurden, hatten signifikant weniger Reusendornen (Mittelwert: 32.3 ± 4.5 Standardabweichung) als die in $25 (35.2 \pm 3.3)$ und $50m (37.1 \pm 3.4)$ Tiefe gefangenen Fische. Die Daten der stabilen Isotopen wiesen auf Unterschiede in den Nahrungsnischen der Fische aus den unterschiedlichen Tiefen hin. Flach laichende Fische zeigten eher benthische Nischencharakteristika, während die Nischen der tiefer laichenden Fische eher pelagialen Charakter hatten.

Diskussion

Phänotypische Divergenz in benthischen und pelagialen Merkmalen

Die Anzahl an Reusendornen ist ein erbliches Merkmal, das die Frasseffizienz von Felchen bestimmt (Vonlanthen et al. 2012). Unterschiede in der Reusendornenanzahl zwischen Individuen spiegeln Unterschiede in der Nahrungswahl wieder: eine grosse Anzahl an Reusendornen ist vor allem bei im Freiwasser lebenden, Zooplankton fressenden Formen von Felchen zu finden. Die engstehenden, zahlreicheren Reusendornen erhöhen die Effizienz des Herausfilterns von kleinen Nahrungspartikeln wie Zooplankton. Felchen mit weniger Reusendornen fressen vorwiegend grobpartikuläre Nahrung am Boden wie z.B. Makrozoobenthos. Die Unterschiede in den Reusendornen der Gangfische aus unterschiedlichen Tiefenstufen weisen also indirekt auf eine phänotypische Divergenz zwischen mehr benthisch und mehr pelagial lebenden Formen hin. Eine solche Divergenz in funktionellen Merkmalsausprägungen zwischen unterschiedlichen Tiefenstufen ist auch in der Körperform zu erkennen.

Bei Fischen führt ein hochrückiger Körperbau zu einer besseren Manövrierfähigkeit, weil er die Lage des Körpers im Wasser wie ein Kiel stabilisiert. Weist ein hochrückiger Körper auch noch eine unterständige Lage des Mauls auf, ist der Fisch bestens an das Fressen von bodenlebender Nahrung angepasst. Ein stromlinienförmiger Körper mit einem endständigen Maul ist eine Anpassung an langes ausdauerndes Schwimmen zum Fressen von im Wasser weit verteilten Nahrungsor-

ganismen wie Zooplankton. Aufgrund der multivariaten Analyse der Körperform und den Abbildungen der Gangfische aus unterschiedlichen Tiefen kann man annehmen, dass die Gangfische welche auf 2m Tiefe gefangen wurden eher eine benthisch angepasste Körperform haben, während die tiefer gefangenen Exemplare eher eine pelagisch angepassten Körperform aufweisen.

Phänotypisches Potenzial für zukünftige Divergenz

Im vorliegenden Fall erstreckt sich die Reusendornenanzahl der Gangfische von 23 bis 42. Das ist eine substanziell breitere Spanne als sie noch vor der Eutrophierung für die Gangfische angegeben wurde (33-49: Nümann 1978; Vonlanthen et al. 2012). Hierbei ist besonders zu erwähnen, dass sich die Erweiterung der Spanne in Richtung niedrigerer Reusendornenzahlen vollzogen hat. Eine niedrige Anzahl an Reusendornen war ein charakteristisches Merkmal für die benthischen Felchenformen des Bodensees, welche während der Eutrophierung ganz verschwanden (Kilch, Spanne: 17-25) oder stark zurückgingen (Sandfelchen, Spanne: 25-29).

Eine denkbare Zukunftsentwicklung der Felchenformenvielfalt des Bodensees ist eine Wiederkehr der ursprünglichen Vielfalt. Dies entspräche unserem konzeptuellen Modell, welches besagt, dass sich das Wirken der natürlichen Selektion im re-oligotrophierten Bodensee wieder zu einer disruptiven Selektion entwickelt (Abb. 1a, Selektionsregime und 1b, Phänotypische Divergenz). Während der Eutrophierung gab es keine zwei Fitnessmaxima mehr, die der bimodalen Ressourcenverteilung in pelagisch und benthisch entsprachen. Mit zunehmender Re-oligotrophierung jedoch entstehen wieder zwei Fitnessmaxima mit einem entsprechenden Fitnesstal dazwischen. Extrem an die beiden Enden der Ressourcenverteilung angepasste Phänotypen wären in solch einem Selektionsregime wieder begünstigt.

Weitere Forschungen zur Entwicklung der phänotypischen und genetischen Divergenz der Gangfische und anderer Felchenformen werden klären können, ob und in wieweit die Vielfalt der Felchenformen im Bodensee und anderen Seen zurückkehren kann.

Danksagung

Wir danken Alfred Sulger, dessen Beobachtung laichender Gangfische im Uferbereich unsere Untersuchungen veranlasste. Das Forschungsprojekt wurde finanziert vom SFB 454 "Bodenseelitoral" und von der Malmens Stiftung für Limnologische Forschung.

Literatur

- Eckmann, R. 2012. Massive stocking with hatchery larvae may constrain natural recruitment of whitefi sh stocks and induce unwanted evolutionary changes. *Advances in Limnology Biology and Management of Coregonid Fishes* 2008 63:325-336
- Hirsch PE, Eckmann R, Oppelt C, Behrmann-Godel J. 2013 Phenotypic and genetic divergence within a single whitefish form detecting the potential for future divergence, Evolutionary Applications, 6(8) 1119–1132
- Nümann, W. 1978. Versuch einer Klassifizierung der Bodenseecoregonen durch Vergleich kombinierter Merkmale und die Eingliederung der sogenannten Braunfelchen. Archiv für Hydrobiologie 82:500-52
- Rohlf, F. J. 1993. *TPSRW: thin-plate spline relative warp analysis* NY: Dept. of Ecology and Evolution, State Univ. of New York.
- Vonlanthen, et al 2012. Eutrophication causes speciation reversal in whitefish adaptive radiations. Nature 482 (7385):357-362.

POSTERPRÄMIERUNG 2013

Breidenbach, A., C. App, A. Grün, K. Hofmann, J. Meier & W. Manz: Auswirkung von Silbernanopartikeln auf die Struktur bakterieller Lebensgemeinschaften in Biofilmen aus Fließgewässer-Mesokosmen

LAU, M., M. ROTHE, A. KLEEBERG & M. HUPFER: A 'rusty' carbon sink in freshwater systems – How excess iron promotes sediment growth

KÖPPEL. CH., R. HANSMANN & W. SCHMITZ: Wie wirken Wasserbaumaterialien auf die Struktur und Diversität von Mikrobengemeinschaften?

Deutsche Gesellschaft für Limnologie (DGL) Erweiterte Zusammenfassungen der Jahrestagung 2013 (Potsdam-Berlin), Hardegsen 2014

Auswirkung von Silbernanopartikeln auf die Struktur bakterieller Lebensgemeinschaften in Biofilmen aus Fließgewässer-Mesokosmen

Andreas Breidenbach1, Constantin App2, Alexandra Grün3, Kerstin Hofmann4, Jutta Meier5 & Werner Manz6

Keywords: Biofilm, Mesokosmen, Silbernanopartikel, Ag-Np, t-RFLP-Analyse, 16S rDNA

Einleitung

Silbernanopartikel (Ag-Np) werden in vielerlei Gebrauchsgegenständen eingesetzt und nach der Verwendung in der Umwelt freigesetzt – Verbleib und Konsequenzen sind jedoch nahezu unverstanden. Aufgrund ihrer antibakteriellen Wirkung ist aber ein Einfluss auf natürliche Biofilme in Fließgewässern möglich. Zur Erfassung struktureller und phylogenetischer Auswirkungen einer Exposition von Biofilmen mit Silbernanopartikeln wurden Biofilme in Mesokosmen mit Rheinwasser und -sediment unter kontrollierten Bedingungen erzeugt. Folgende Hypothesen wurden aufgestellt: (1) Durch die Wechselwirkung von Ag-Np mit der EPS-Matrix verändert sich die 3D-Struktur des Biofilmes im Hinblick auf dessen Wuchshöhe und Dichte. (2) Durch die zytotoxische Wirkung von Ag-Np wird Biomassebildung beeinflusst und der Biofilmaufbau verhindert. (3) Die Ag-Np haben Auswirkungen auf die Zusammensetzung der bakteriellen Lebensgemeinschaft im Biofilm.

Material und Methoden

Versuchsaufbau

In einer mit einem Schaufelrad – zur Erzeugung der Fließgeschwindigkeit – und einer künstlichen Tag-Nacht-Beleuchtung betriebenen Fließrinne wurden Biofilme auf Objekträgern für 14 Tage angezogen und für die Inkubation mit Ag-Np für den gleichen Zeitraum in drei Aquarien überführt. Diese Aquarien mit einem Fassungsvermögen von 60 l, einer darin mittig platzierten Trennwand und einer Aquarienpumpe dienten als Mikrokosmen für die Konfrontation des Biofilmes mit Ag-Np in zwei Größen (30 und 70 nm Durchmesser) mit einer ökologisch relevanten Konzentration von 600 μg/l. Eines der Aquarien wurde als Negativkontrolle verwendet So wurden drei Replikate durchgeführt. Wasser und Sediment wurden aus dem Mittelrhein am Niederwerth in Koblenz entnommen und die Fließgeschwindigkeit auf 0,04 – 0,3 m s⁻¹ eingestellt. Die physico-chemischen Bedingungen der Fließrinne und der Aquarien wurden regelmäßig überprüft.

Epifluoreszenzmikroskopie

Die Mikroskopie diente der Erfassung qualitativer Unterschiede zwischen mit Nanopartikel behandelten und unbehandelten Biofilmen. Zur mikroskopischen Untersuchung der Biofilm-Gemeinschaften wurden Objektträger mit LIVE/DEAD BacLight (Invitrogen) eingefärbt. Dieses

¹ andybreidenbach@uni-koblenz.de, ² capp@uni-koblenz.de, ³ alexg@uni-koblenz.de, ⁴ kehoffmann@uni-koblenz.de, ⁵ jmeier@uni-koblenz.de, ⁶ manz@uni-koblenz.de

Färbe-Kit färbt lebende Mikroorganismen mit SYTO 9 grün und tote Zellen mittels Propidiumiodid rot ein.

Analyse des Bioflimes

Zur Charakterisierung der 3D-Struktur des Biofilmes wurden gravimetrische Dichtemessungen und zur Bestimmung der Biomasse Protein- und Chlorophyllmessungen durchgeführt (ARVIN 1991, LORENZEN 1967, RITCHIE 2008 und STAUDT et al. 2004). Aus der Feuchtmasse, der Trockenmasse und der Masse des Objektträgers wurde die Wuchshöhe (L_F) und die Dichte (ρ_F) des Biofilmes errechnet. Diese Messung wurde mit der Proteingehaltsbestimmung kombiniert: die Zellen des getrockneten Biofilmes wurden aufgeschlossen, mit BCA-Reagenz versetzt und vergleichend mit einer BSA-Lösung photometrisch gemessen. Mit nativem Biofilm wurde eine photometrische Chlorophyllbestimmung durchgeführt.

Molekularbiologische Analysen

Die phylogenetische Zusammensetzung der bakteriellen Lebensgemeinschaft der Biofilme wurde mittels t-RFLP-fingerprint bestimmt. Die DNA wurde modifiziert nach Morán (2008) und MARMUR (1961) extrahiert. Zur Vervielfältigung der 16S-rRNA-Gene wurde eine PCR mit 27f-FAM- (fluoreszenz-markiert) und 1492r-Primern durchgeführt. Das PCR-Produkt wurde zur Quantifizierung auf ein Argarose-Gel aufgetragen und anschließend aufgereinigt. Der Restriktionsverdau wurde mit den Enzymen MspI und BstUI durchgeführt. Die so erhaltenen Restriktionsfragmente wurden mittels Kapillarelektrophorese aufgetrennt. Auf die erhaltenen und mit GenMapper bearbeiteten Daten des t-RFLP-fingerprints wurden Biodiversitätsindizes und Clusteranalysen angewendet.

Statistische Analyse

Alle erhobenen Daten wurden mit Hilfe von statistischen Tests auf deren Normalverteilung (Shapi-

ro-Wilk-Test) und auf bestehende Unterschiede (T-Test und Wilcoxon-Test) hin untersucht. Zusätzlich wurde der Shannon-Wiener Index und die Evenness auf die Ergebnisse des t-RFLP-fingerprints angewendet und eine multivariante Clusteranalyse mit Hilfe des Bray-Curtis Index durchgeführt. Hierzu wurde Rund die PAST Software verwendet (FETZER 2009, GARDENER 2012).

Ergebnisse

Mikroskopische Untersuchungen

Repräsentativ für alle Replikate wurden die Algenarten anhand der Negativkontrolle des Replikates I bestimmt. Es konnten 5 Kieselalgen und 1 fädige Grünalgen-Art bestimmt werden (Abb. 1). Navicula pupula tritt dabei am häufigsten auf und ist auch in den Ag-Np-Proben festzustellen.

Charakterisierung des Biofilmes

Die L_F der Negativkotrolle (p = 0,0075) und ρ_F

der 70-nm-NP (p = 0,0019) waren nicht normalverteilt und enthielten jeweils einen Ausreißer. Es

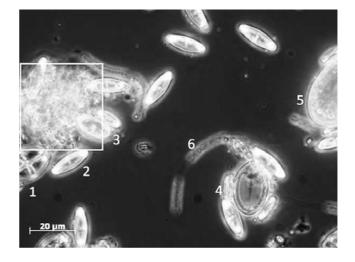


Abb. 1: Mikroskopische Aufnahme (1000x) mit LIVE/DEAD® Fluoreszenzfarbstoff, Bakterien mit EPS (Kasten), Amphora pediculus (1), Navicula pupula (2), Diploneis ovalis (3), Cocconeis placentula (4), Cymatopleura elliptica (5), Chlorhormidum flaccidum (6)

konnte kein signifikanter Unterschied zwischen der L_F (p = 0,0734, Wilcoxon) und der ρ_F (p = 0,104, t-Test) der Anzucht-Fließrinne und unbehandelten Probe festgestellt werden. Zwischen der Negativ-kontrolle und den Ag-Np-Proben besteht ebenfalls kein signifikanter Unterschied. Ebenfalls konnte kein signifikanter Unterschied zwischen den beiden verwendeten Ag-Np-Größen (30 nm und 70 nm) festgestellt werden: L_F (p = 0,79, t-Test) und ρ_F (p = 0,76, Wilcoxon) (Abb. 2 und Abb. 3.)

Die Ergebnisse der Chlorophyllbestimmung zeigen, dass sich die phototrophen Organismen in den mit Silbernanopartikeln behandelten Proben ebenso entwickeln wie in den unbehandelten Proben

und somit kein signifikanter Unterschied besteht (Abb. 4). Der t-Test zwischen der Anzucht-Fließrinne und der Negativkontrolle ergab einen signifikanten Unterschied (p = 0,008) Die 30-nm-NP waren nicht normalverteilt (p = 0,04).

Alle Proben der Proteingehaltsbestimmung waren normalverteilt (p > 0.05, Shapiro-Wilk). Die durgeführten t-Tests ergaben weder einen signifikanten Unterschied zwischen der Anzucht-Fließrinne, der Negativkontrolle oder den Ag-Np-Proben noch konnte ein signifikanter Unterschied zwischen den beiden Ag-Np-Größen (p = 0.54) festgestellt werden (Abb. 5).

T-RFLP-Analyse der bakteriellen Lebensgemeinschaften im Biofilm

Dem gegenüberstellend zeigen die Ergebnisse der t-RFLP-Analyse, dass sich Ag-Np auf die phylogenetische Zusammensetzung der bakteriellen Lebensgemeinschaften auswirken. Lässt sich beim Vergleich der Shannon-Wiener Indizes (2,2 bis 3,4) und der Evenness (≈ 0.6) kein signifikanter Unterschied feststellen, fällt bei der multivarianten Clusteranalyse auf, dass sich die bakterielle Lebensgemeinschaft in den Ag-Np-Proben aus unterschiedlichen Phylotypen zusammensetzen: alle Negativkontrollen gruppieren sich und zeigen Ähnlichkeiten von ≈ 50 -60%. Die Ag-Np-Proben ähneln den Negativkontrollen nur zu 25% (MspI, Abb. 7) bzw. 40% (BstUI, Abb. 6). Die Negativkontrollen weisen nur eine geringe Ähnlichkeit zu den Ag-Np-Proben auf. Auch zeigen sich keine unterschiedlichen Wirkungen der verwendeten Ag-Np-Größen.

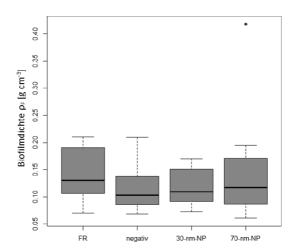


Abb. 2: Biofilmdichte aller Replikate als Box-Whisker-Diagramm und Ausreißer (roter Punkt). n=12

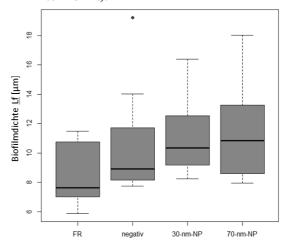


Abb. 3: Biofilmhöhe aller Replikate als Box-Whisker-Diagramm und Ausreißer (roter Punkt). n=12

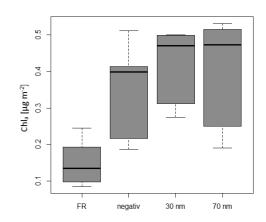


Abb. 4: Chlorophyllgehalt aller Replikate als Box-Whisker-Diagramm, FR – negativ = signifil === 12

Diskussion

Einfluss der Ag-Np auf die Eigenschaften des Biofilmes

Mit Hilfe der bestimmten Algenarten der Epifluoreszenzmikroskopie lässt sich eine ökologische Bewertung der Replikate durchführen. Diese entsprechen einem β-mesosaproben Gewässer der Güteklasse II, welches dem ökologischen Zustands des Mittelrheines entspricht (HOFMANN 2009, STREBELE & KRAUTER 1988). Die Ergebnisse der gravimetrischen Messungen legen den Schluss nahe, dass die Auswirkungen der Ag-Np keine negativen Auswirkungen auf das Wachstum des Biofilmes haben. Nach der zweiwöchigen Anzuchtsphase in der Fließrinne hat der Biofilm die stationäre Phase erreicht (McDougland et al. 2012, Manz 2012). Ein ähnliches Bild ergibt sich auch bei den Proteingehalten. Im Gegensatz dazu zeigen die Chlorophyllwerte weiteres Wachstum der photoautotrophen Organismen.

Einfluss der Ag-Np auf die Zusammensetzung bakterieller Lebensgemeinschaften

Die Ergebnisse der beiden Restriktionsenzyme ähneln sich sehr stark. MspI und BstUI zeigen, dass sich die Zusammensetzung der bakteriellen Lebensgemeinschaften durch die Konfrontation mit Ag-Np verändern. Dies hatte jedoch keinen signifikanten Einfluss auf die Diversität der Biofilme und lässt den Schluss zu, dass weniger Ag-tolerante Bakterienarten durch andere ersetzt bzw. verdrängt wurden. Dabei schützt die EPS vor dem Eindringen von Ag-Np. Außerdem schwächt die aktive Aggregation und die Reduktion der Ag-Np mit Schwefelverbindungen vor der toxischen Wirkung von Ag-Np (HABIMANA et al. 2011, LEVARD et al. 2012, LOMBI et al. 2013, SHENG & YANG 2011). Ebenfalls ist die Herausbildung von Resistenzen möglich (CHUN-NAM et al. 2007, DAS et al. 2012). Die genetische und physiologische Heterogenität der bakteriellen Lebensgemeinschaften in Biofilmen stellt die Herausbildung und Aktivierung von Resistenzen gegen antibakteriell wirksame Ag-Np sicher und verhindert somit einen signifikanten Effekt auf den Biofilm (DAS et al. 2012, HABIMANA et al. 2011, HARRISON et al. 2007, PEULEN & WILKINSON 2011).

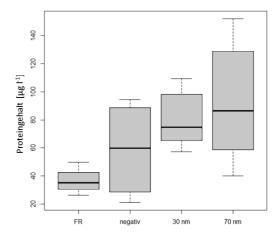


Abb. 5: Proteingehalt aller Replikate als Box-Whisker-Diagramm . n=12

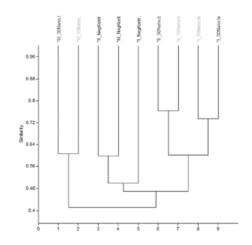


Abb. 6: Clusteranalyse mittels Bray-Curtis-Index für BstUI-Verdau

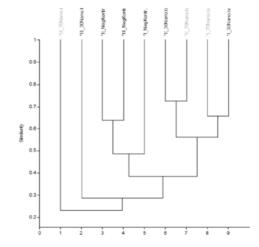


Abb. 7: Clusteranalyse mittels Bray-Curtis-Index für MspI-Verdau

Schlussfolgerungen

Die aufgestellten Arbeitshypothesen konnten teilweise bestätigt werden: die beiden ersten Hypothesen wurden falsifiziert, wohingegen die dritte Hypothese anhand der Veränderungen der Artenzusammensetzung der Biofilme verifiziert werden konnte. Ein Unterschied zwischen der toxischen Wirkung von 30 nm Ag-Np und 70 nm Ag-Np konnte statistisch nicht nachgewiesen werden. Der entwickelte Versuchsaufbau zeigte sich dazu geeignet, ein natürliches Fließgewässer replizierbar nachzubilden. In weiterführenden Versuchen sollten kürzere Beprobungsintervalle gewählt werden um auch kurzfristig wirkende toxische Einflüsse von Ag-Np sowie eine Adaptation der bakteriellen Lebensgemeinschaft abbilden zu können.

Danksagung

Außerdem möchte ich Frau Dr. Sabine Kleinsteuber und Frau Ute Lohse vom Helmholtz Zentrum für Umweltforschung – UFZ, Department Umweltmikrobiologie, in Leipzig für die Durchführung der t-RFLP-Analyse und der Bereitstellung der Auswertungsunterlagen danken.

Diese Untersuchung wurde im Rahmen einer Bachelorarbeit durchgeführt und ist Teil des Projektes InterNano der DFG.

Literatur

- Arvin, E. (1991). Biodegradation kinetics of chlorinated aliphatic hydrocarbons with methane oxidizing bacteria in an aerobic fixed biofilm reactor. Water Research, 25: 873-881
- Blaser, S. A., Scheringer, M., MacLeod, M. & K. Hungerbühler (2008). Estimation of cumulative aquatic exposure and risk due to silver: Contribution of nano-functionalized plastics and textiles. Science of the total Environment, 390: 396-409
- Chun-Nam, L., Chi-Ming, H., Rong, C., Qing-Yu, H., Wing-Yiu, Y., Hongzhe, S., Kwong-Hang, P. T., Jen-Fu, C. & C. Chi-Ming (2007). Silver nanoparticles: partial oxidation and antibacterial activities. Journal of Biology and Inorganic Chemistry, 12: 527-534
- Das, P., Williams, C. J., Fulthorpe, R. R., Hoque, M. E., Metcalfe, C. D. & M. A. Xenopoulos (2012). Changes in bacterial community structure after exposure to silver nanoparticles in natural waters. Environmental Science and Technology, 46: 9120-9128
- Fetzer, I. (2009). Cookbook for successful T-RFLP analysis. Course Script. Leipzig: Helmholtz Zentrum für Umweltforschung
- Gardener, M. (2012). Statistics for Ecologists Using R and Excel Data Collection, Exploration Analysis and Presentation Data in the Wild Series. Exeter, Großbritannien: Pelagic Publishing
- Habimana, O., Steenkeste, K., Fontaine-Aupart, M.-P., Bellon-Fontaine, M.-N., Kulakauskas, S. & R. Briandet (2011). Diffusion of nanoparticles in biofilms is altered by bacterial cell wall hydrophobicity. Applied and Environmental Microbiology, 77: 367-368
- Harrison, J. J., Ceri H. & R. J. Turner (2007). Multimetal resistance and tolerance in microbial biofilms. Nature Reviews Microbiology, 5: 928-938
- Hofmann, G. (2009). Rheinmessprogramm Biologie 2006/2007 Teil II-C (Teilkompartiment Phytobenthos) Benthische Diatomeen im Rhein. Koblenz: Internationale Kommission zum Schutz des Rheins (IKSR) Bericht Nr. 171
- Levard, C., Hotze, E. M., Lowry, G. V. & G. E. Brown, Jr. (2012). Environmental transformations of silver nanoparticles: Impact on stability and toxicity. Environmental Science and Technology, 46: 6900-9614
- Lombi, E., Donner, E., Taheri, S., Tavakkoli, E., Jämting, Å. K., McClure, S., Naidu, R., Miller, B. W., Scheckel, K. G. & K. Vasilev (2013). Transformation of four silver/silver chloride nanoparticles during anaerobic treatment of wastewater and post-processing of sewage sludge. Environmental Pollution, 176: 193-197
- Lorenzen, C. J. (1967). Determination of chlorophyll and pheo-pigments: Spectrophotometric equations. Limnology and Oceanography, 12: 343-346
- Manz, W. (2012). Vorlesungsskript: Mikrobielle Ökologie. Koblenz: Universität Koblenz-Landau
- Marmur, J. (1961). A procedure for the isolation of desoxyribonucleic acid from microorganism. Journal of Molecular Biology, 3: 208–218

- McDougald, D., Rice, S. A., Barraud, N., Steinberg, P. D. & S. Kjelleberg (2012). Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nature Reviews Microbiology, 10: 39-50
- Moràn, A. C., Hengst, M.B., De La Iglesia, R., Andrade, S., Correa, J.A. & B. González (2008). Changes in bacterial community structure associated with coastal copper enrichment. Environmental Toxicology and Chemistry, 27: 2239-2245
- Peulen, T.-O. & K. J. Wilkinson (2011). Diffusion of nanoparticles in a biofilm, 45: 3367-3373
- Ritchie, R. J. (2008). Universal chlorophyll equations for estimating chlorophylls a, b, c and d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol, or ethanol solvents. Photosynthetica, 46: 115-126
- Sheng Z. & L. Yang (2011). Effects of silver nanoparticles on wastewater biofilms. Water Research, 45: 6039-6050
- Staudt, C., Horn H., Hempel D. C. & T. R. Neu (2004). Volumetric measurements of bacterial cells and extracellular polymeric substance glycoconjugates in biofilms. Biotechnology and Bioengineering, 88: 585-592
- Strebele, H. & D. Krauter (1988) Das Leben im Wassertropfen Mikroflora und Mikrofauna des Süßwassers Ein Bestimmungsbuch. Stuttgart: Kosmos Gesellschaft der Naturfreunde Franckh'sche Verlagshandlung, 8. Auflage

Deutsche Gesellschaft für Limnologie (DGL) Erweiterte Zusammenfassungen der Jahrestagung 2013 (Potsdam), Hardegsen 2014

A 'rusty' carbon sink in freshwater systems – How excess iron promotes sediment growth

Maximilian Lau¹, Matthias Rothe¹, Andreas Kleeberg² & Michael Hupfer¹

Keywords: lake, sediment diagenesis, iron, organic carbon, co-precipitation

Introduction

Interactions in the biogeochemical cycles of iron and carbon have been studied for over 20 years in manifold marine and freshwater systems. Based on the observations of co-variation of dissolved organic carbon (DOC) and dissolved iron concentration in pore and surface waters, source and sink mechanisms have been described (McKnight et al. 1992). Mineral surfaces act as active sites for adsorption which has been stated specifically in the case of phosphorus (Qiu & McComb 2002). Its role as often limiting nutrient in many freshwater systems has always drawn special attention to the sediments capability of sequestering dissolved substances. Only recently, it has been found that the limited active surface area of solid iron phases in soils and sediments can not account for high organic carbon (OC) to Fe ratios of mineral particles found in those systems (Wagai & Mayer 2007). Based on these results an alternative mechanism has been suggested: co-precipitation of reduced iron at oxic/anoxic interfaces in the presence of DOC results in the formation of OC-Fe particles (Lalonde et al. 2012). This 'rusty' carbon sink mechanism is supposed to generate particles having sufficient high OC to Fe ratios as well as a preservative effect regarding the microbial degradation of particulate organic matter (OM) (Eglinton 2012).

Although Fe is a ubiquitous component in freshwater systems, the mechanism of DOC~Fe binding deserves particular attention in iron-rich ecosystems (Laskov et al. 2002). Especially downstream of post-mining landscapes, riverine iron concentration can exceed the pristine levels orders of magnitude (Blodau 2006). Apart from that, metal salts of iron and aluminum have been used as a lake restoration agent in order to decrease pelagic phosphorus concentration (Kleeberg et al. 2013). We hypothesize, that these newly evolved iron-rich systems may then act as substantial OC sinks that can eventually be identified by their increased sediment accretion.

Materials and Methods

To study the potential carbon burial mechanism in a freshwater system we took sediment cores from Lake Groß-Glienicke, Berlin, Germany. In 1992, this lake has been treated with solid ferric hydroxide and dissolved ferric chloride in order to lower the phosphorus content of the water column (Wolter 2010). Subsequently, total phosphorus and chlorophyll a concentration dropped on average by 95 % and 80 % to today's mesotrophic level (Kleeberg et al. 2013). Due to ongoing sedimentation after the 1992 treatment, a zone of increased iron content is expected to be found within deeper sediment horizons. However, because of the iron's redox sensitivity, the entire newly

¹ Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB), Chemische Analytik und Biogeochemie, Müggelseedamm 301, 12587 Berlin, lau@igb-berlin.de, rothe@igb-berlin.de, hupfer@igb-berlin.de; ² Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF); Eberswalder Straße 84, 15374 Müncheberg, kleeberg@zalf.de

formed sediment may hold an elevated iron content. This setting provides the unique opportunity to compare older sediment layers scarce in iron with those elevated in iron content in terms of carbon burial efficiency.

Sediment cores were obtained at about 10 m depth close to the deepest point of the lake (11 m) and sliced in 2.5 cm layers before freeze drying. No effort was taken to avoid the contact of oxygen to the reduced sediments. After removal of macroscopic particles the dry samples were homogenized with a pestle. Triplicate reductive extractions of each sediment depth were performed according to the bicarbonate citrate dithionite (CBD) method by Lalonde et al. (2012). Many authors described extraction procedures of varying reactivity to investigate the samples mineral composition (Mehra & Jackson 1960; Qiu & McComb 2002). In this case, it is assumed that the reductive nature of the reagents dissolves both iron oxide phases and OC associated with these phases. Elemental analysis (C, H, N) was performed in sediment layers deposited prior and after the treatment while accounting for mass losses. The mobilization of OC *not* associated with redox-sensitive phases was quantified by non-reductive extractions at similar conditions and equal ionic strength of solvents in triplicate for each depth as a control. Lalonde et al. (2012) confirmed that most (>98 %) of the iron phases and associated carbon are dissolved by a single CBD treatment. Changes of inorganic carbon content were determined separately via loss on ignition (450°C, 5 h).

Concentrations of iron in treatment and control samples were measured using flame atomic absorption spectroscopy (PinAAcle, Perkin Elmer, USA). Dissolved organic carbon was analyzed as non-purgeable OC via thermocatalytic combustion with a C-analyzer (TOC 5000, Shimadzu, Japan). Losses of OC upon treatment were evaluated by elemental analysis (Vario EL, Elementar, Germany).

Results

The sediment stratigraphy shows two distinct sections of iron abundance (Fig. 1A). The 1992 treatment, indicated by peak iron abundance, is currently in 22 cm depth. Figure 1B shows control-corrected values of OC mobilized by reductive dissolution of solid-state iron oxides (OC-Fe) in respect to total OC in the same layer. Molar OC:Fe ratio did not change significantly in spite of an elevated Fe-availability after the restoration (Fig. 1C).

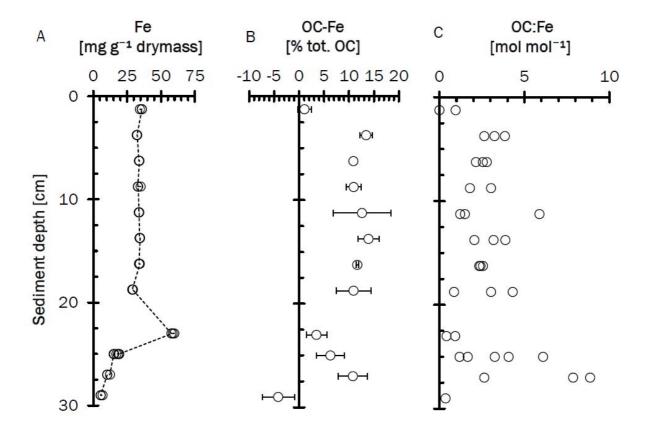


Fig. 1: Horizontal distribution of (A) redox-active (citrate bicarbonate dithionite extractable) iron (n = 3). Peak iron concentrations result from bulk iron addition in 1992. (B) Proportion of total organic carbon (tot. OC) that was directly associated with iron (OC-Fe). Error bars show one standard deviation from triplicate measurements. Negative values result from control correction with data from non-reductive blind treatments. (C) Molar ratio of OC to Fe in reductively extracted sediment material. Cores (n = 2) were obtained from Lake Groß-Glienicke in 2013.

Discussion

Core stratigraphy (Fig. 1) clearly indicates two different sections of Fe abundance. Sediments of dimictic Lake Groß-Glienicke are regularly subject to changing redox conditions at their surface. During overturn, oxic surface waters mix with the hypolimnion and previous anoxic conditions cease. Ferrous iron in the hypolimnion and at the sediment/water interface will thus be oxidized and precipitated. Due to this iron mobility cycle, the bulk amount of iron addition during the 1992 treatment is constantly moving upwards within the sediment column leaving a distinct zone of higher Fe abundance (Kleeberg et al. 2013). Besides that, diffusive fluxes of dissolved ferrous iron within deeper sediment horizons lead to moderately elevated Fe content in sediment layers formed prior the 1992 treatment.

The oscillation of mobile iron and oxygen at the sediment's surface indicate regular potential for the proposed mechanism of OC-Fe co-precipitation in Lake Groß-Glienicke. We found that up to 15% of OC is directly associated to Fe-phases both before and after the restoration. While we expected a

significant shift in OC burial after the iron addition, our result cannot fully support the hypothesis of OC-Fe co-precipitation as a key driver for increased sediment accretion. However, our findings support the assumption, that by increased Fe content not only phosphorus retention but also OC burial is enhanced. The isotropic mobility of reduced (dissolved) iron within the pore water in combination with a coarse sampling impedes interpretation of OC-Fe abundance before and after the treatment. The low abundance of Fe-bound OC in the uppermost (0-2.5 cm) sediment suggests a mechanism uncoupled from the oxygenated sediment surface. Possibly, OM freshly deposited at the lake bottom is not prone to molecular-scale precipitation processes prior microbial and benthic macroinvertebrate degradation. Activity of chironomid larvae (Chironomidae, non-biting midges) results in the formation of substantial, oxygenated macrozones within the sediment, so that ferrous iron can be oxidized and precipitated up to 14 cm below sediment surface (Lewandowski et al. 2007).

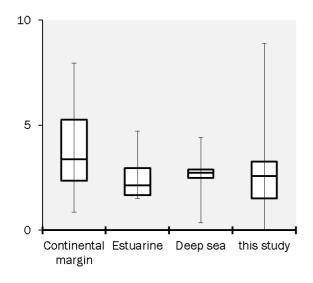


Fig. 2: Box-plots showing molar ratios of OC to Fe found for sediments of Lake Groß-Glienicke (Fig. 1C) as well as for marine and brackish ecosystems. Boxes indicate interquartile range and median, whiskers include the upper and lower quartile. Our data are compared to those by Lalonde et al. (2012).

The OC:Fe ratios are thought to depend on pore water concentrations upon formation and are in the range of those found in marine and estuarine sediments (Fig. 2). This finding indicates that not only a large share of OM within the sediment profile is associated with Fe but there is a net increase in OC burial.

Lowering the pelagic phosphorus content lead to the substantially lower algal abundance after the treatment, indicated by a reduction of chlorophyll a concentrations. As a result, a light regime shift promoted the growth of benthic vegetation that can be found today in depth down to 7 m. We cannot say if expansion of submerged macrophytes is sufficient to increase overall productivity of the lake system, which, together with sediment focusing, could also increase deposition of OM at the lake's deepest point. Despite that, we propose that this 'rusty' carbon sink mechanism leads to somewhat non-conservative sediment accretion rates in lakes restored with iron salts. Total OM represents only 25-36% of total sediment dry mass so that overall sediment accretion is only minimally altered. This hypothesis is supported by a previous study in the same system, indicating that after the restoration, phosphorus content in OM remained unexpectedly high (Kleeberg et al. 2013). Here again we want to emphasize that despite fewer OM reaching the lake floor, with the help of iron oxides more of it is actively being buried within the sediment for at least intermediate timescales as proposed for redox interfaces in peatlands (Riedel et al. 2013). In the future, we seek to proof changes in sediment accretion rates before and after the restoration with the help of radiometric dating.

Acknowledgments

The authors thank Grit Siegert and Sarah Schell for assistance during CNS/DOC measurements and Dominik Zak (all IGB Berlin) for fruitful discussions on the subject of the present study. This study was performed within the framework of two PhD theses. M. Lau is working within the Aqualink Graduate School funded by the Leibniz Association, and M. Rothe within the research grant 'Redoxphos' which is financially supported by the Deutsche Forschungsgemeinschaft (Hu 740/5-1). M. Hupfer and A. Kleeberg are senior researchers within the same projects.

Literature

- Blodau, C. (2006). A review of acidity generation and consumption in acidic coal mine lakes and their watersheds. Science of The Total Environment, 369(1): 307-332.
- Eglinton, T. I. (2012). Geochemistry: A rusty carbon sink. Nature, 483(7388): 165-166.
- Kleeberg, A., C. Herzog and M. Hupfer (2013). Redox sensitivity of iron in phosphorus binding does not impede lake restoration. Water Research, 47(3): 1491-1502.
- Lalonde, K., A. Mucci, A. Ouellet and Y. Gélinas (2012). Preservation of organic matter in sediments promoted by iron. Nature, 483(7388): 198-200.
- Laskov, C., W. Amelung and S. Peiffer (2002). Organic matter preservation in the sediment of an acidic mining lake. Environmental Science & Technology, 36(20): 4218-4223.
- Lewandowski, J., C. Laskov and M. Hupfer (2007). The relationship between *Chironomus plumosus* burrows and the spatial distribution of pore-water phosphate, iron and ammonium in lake sediments. Freshwater Biology, 52(2): 331-343.
- McKnight, D. M., R. L. Wershaw, K. E. Bencala, G. W. Zellweger and G. L. Feder (1992). Humic substances and trace metals associated with Fe and Al oxides deposited in an acidic mountain stream. Science of The Total Environment, 117-118: 485-498.
- Mehra, O. and M. Jackson (1960). Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Proc. 7th nat. Conf. Clays.
- Qiu, S. and A. J. McComb (2002). Interrelations between iron extractability and phosphate sorption in reflooded air-dried sediments. Hydrobiologia, 472(1-3): 39-44.
- Riedel, T., D. Zak, H. Biester and T. Dittmar (2013). Iron traps terrestrially derived dissolved organic matter at redox interfaces. Proceedings of the National Academy of Sciences, 110(25): 10101-10105.
- Wagai, R. and L. M. Mayer (2007). Sorptive stabilization of organic matter in soils by hydrous iron oxides. Geochimica et Cosmochimica Acta, 71(1): 25-35.
- Wolter, K.-D. (2010). Restoration of Eutrophic Lakes by Phosphorus Precipitation, with a Case Study on Lake Gross-Glienicker. Restoration of Lakes, Streams, Floodplains, and Bogs in Europe, Springer: 85-99.

Deutsche Gesellschaft für Limnologie (DGL) Erweiterte Zusammenfassungen der Jahrestagung 2013 (Potsdam-Berlin), Hardegsen 2014

Modellexperimente zur Sauerstoffverteilung in limnischen Systemen

Christoph Köppel¹, Ralph Hansmann² & Wolfgang Schmitz¹

1 Pädagogische Hochschule Karlsruhe, Institut für Chemie, Bismarckstraße 10, 76133 Karlsruhe; christoph.koeppel@gmx.de; wolfgang.schmitz@ph-karlsruhe.de. 2 Pädagogische Hochschule Karlsruhe, Institut für Physik und technische Bildung, Bismarckstraße 10, 76133 Karlsruhe; ralph.hansmann@ph-karlsruhe.de

Keywords: Sauerstoffverteilung (Visualisierung), Modellexperimente, Strömungskanal, Umweltbildung

Einleitung

Zur Beurteilung der Qualität von Gewässersystemen ist der Sauerstoffgehalt von entscheidender Bedeutung. Die entwickelten und hier aufgeführten Modellexperimente stellen einen Beitrag zur besseren Umweltbildung dar, um limnochemische Grundlagen für die Aus-, Fort- und Weiterbildung im Bildungssektor bereit zu stellen.

Sauerstoffeintrag ins Gewässer

Die Löslichkeit von Gasen im Gewässer hängt von diversen, interdependierenden Faktoren ab, wie z.B. von Austauschvorgängen zwischen Atmosphäre und dem Gewässer, chemischen Reaktionen in der Wasserphase, Photosynthese und physikalischen Faktoren wie Strömungen, Temperatur oder Druck. Daher kommt es zu unterschiedlichen Sauerstoffverteilungen in limnischen Systemen, die üblicherweise mit Sauerstoffelektroden quantitativ erfasst werden.

Visualisierung der Sauerstoffverteilung

Mithilfe eines natürlichen Farbstoffes lässt sich die Sauerstoffverteilung, der Sauerstoffverbrauch oder gar die Produktion (durch Photosynthese) einfach und anschaulich in Modellexperimenten visualisieren. Die Konzeption der Modellexperimente basiert auf ein bekanntes Modellexperiment zur Photosynthese. Hierbei wird der von der Wasserpest synthetisierte Sauerstoff mit Hilfe von Indigocarmin (Leuko-Form) nachgewiesen (Wild & Schmitt 2012).

Reaktionsmechanismus des Redoxsystems Indigocarmin / Dithionit

Oxidation: $Na_2S_2O_4 + 4OH^- \rightarrow 2Na^+ + 2SO_2 + 2e^- + 2H_2O$

Reduktion: Indigocarmin + $2e^{-} + 2H_2O \rightarrow Leukoindigocarmin + 2OH^{-}$

In oxidierter Form ist Indigocarmin blau, in reduzierter Form, der Leuco-Form, gelb.

Der Verbrauch von Sauerstoff in Gewässern

Sauerstoffzehrung in Gewässern – exemplarisch dargestellt

Hierbei wurden Muscheln (*Dreissena rostriformis bugensis*) in Petrischalen gegeben und mit der Indigocarminlösung versetzt. Nach 48 Stunden war die blaue Indigocarminlösung fast vollständig reduziert (gelblich), obwohl stets atmosphärischer Sauerstoff diffundieren konnte. Festgehalten wurde der Versuch mithilfe einer Gopro HD-Cam, welche im Abstand von 1 Minute über den gesamten Versuch Bilder schoss. Zusammengefügt in einem Zeitraffervideo lässt sich der Verbrauch sehr gut darstellen.

Abb. 1: Verdeutlichung der sauerstoffzehrenden Prozesse von *Dreissena rostriformis bugensis* mithilfe von Indigocarmin-Lösung. (links: Versuchsbeginn, blaue Lösung; rechts: Ende des Versuchs, deutliche Gelbfärbung)

Die Muscheln entziehen der Lösung durch ihre Kiemenatmung den Sauerstoff. Dies wird durch die Gelbfärbung/Reduktion des Indigocarmins sichtbar. Eine andere Möglichkeit, exakt die Atmung bzw. den Verbrauch des Sauerstoffs zu visualisieren, ist das Ansetzen einer "verdickten" Indigocarmin-Lösung. Hierbei wird etwas Terra®-Hydrogel (Bezugsquelle: Zoohandel) der Lösung zugesetzt und kurz erhitzt. Nach dem Abkühlen wird die Lösung gelartig. Jedoch sollte darauf geachtet werden, dass keine zu hohe Hydrogelkonzentration gewählt wird, da sonst die Atmung der Muscheln dadurch beeinträchtigt wird und sie im schlimmsten Fall nicht mehr durch ihre Kiemen atmen können

"Die Ostsee im Rollrandglas"

Ein weiteres, sehr anschauliches, Modellexperiment ist die Simulation der Ostsee im Rollrandglas. Hierbei wurde in einem Rollrandglas der Boden mit Eisen(II)sulfid, FeS, bedeckt. Anschließend wurde eine Schicht aus 3 cm hoher Salzwasser- (w_{NaCl}=1,8%) / Indigocarmin-Lösung gegeben, um die Salzwasserschicht zu simulieren. Danach kam eine "Süßwasser"-Schicht, ebenfalls 3 cm hoch, in Form von reiner Indigocarmin-Lösung hinzu.

Abb. 2: Sauerstoffzehrung am Boden

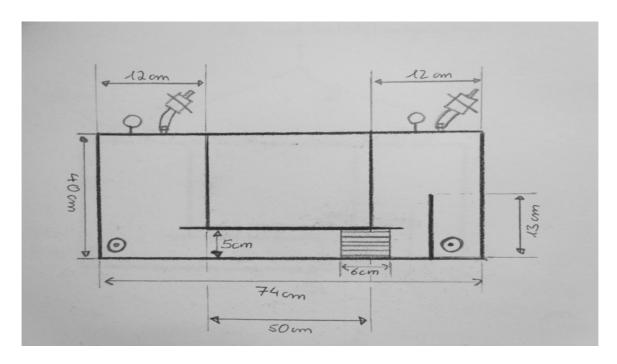
Abb. 3: Unterschiedliche Zonierung der Sauerstoffverteilung (Gesamtansicht)

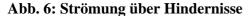
Durch die Reduktion des Indigocarmins in die Leuco-Form (Entfärbung), wird die sauerstoffzehrende Wirkung des Eisensulfids (FeS) verdeutlicht. Dies ist auf Abb. 2 zu erkennen. Die auf Abb. 3 zu erkennende obere Phase lässt sich auf Grund der Schwefelwasserstoff-Gasbildung wie folgt erläutern:

An vereinzelten Stellen in der Ostsee kann man diese entstehenden schwefelhaltigen (Faul-)Gase deutlich riechen.

Der "low-budget" Strömungskanal

Um laminare und turbulente Strömungen "sichtbar zu machen" wurde dieser, nach dem Prinzip der kommunizierenden Röhren konstruierte, Strömungskanal entworfen. Angestrebt wurde ein möglichst kleiner Querschnitt, durch den eine nicht allzu schnelle, jedoch regelbare Strömung fließt. Mit einer handelsüblichen Teichpumpe, die im Auslass regelbar ist, können bis zu 800 Liter Lösung pro Stunde gefördert werden. Alle dafür benötigten Materialien wurden im Baumarkt erworben. Dafür wurde anstatt Plexiglas Bastlerglas verwendet. Alle Anschlüsse sowie Schläuche stammen aus der Gartenabteilung (Gardena®).




Abb. 4: Maße des Strömungskanals

Einige Zentimeter hinter der Einströmöffnung (E) wurden Hindernisse (hier: Steine) positioniert (Abb. 5), um damit den Verlauf um Hindernisse (vgl. Abb. 6) und Totwasserzonen (vgl. Abb. 7) zu veranschaulichen. Wie auf Abb. 5 zu erkennen, wurden sowohl vor, als auch nach den Röhrchen, welche die laminare Strömung erzeugt, Einspritzdüsen installiert, durch die mit Spritzen Sauerstoff zur Oxidation zugeführt werden kann (D).

Abb. 5: Anfang des Strömungskanals

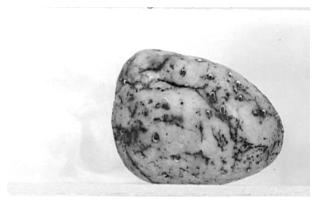


Abb. 7: Totwasserzonen hinter Hindernissen

Um diese komplexen und in der Natur nicht sichtbaren Phänomene anschaulich darzustellen, ist die "low-budget"-Apparatur sehr gut geeignet. Gerade deshalb eignet sie sich in der Umweltbildung, um Schülerinnen und Schülern die Sachverhalte einfach und anschaulich darstellen zu können.

Eine zusätzlich entworfene Halterung ermöglicht es, einen Hohlraum an der Oberfläche zu erzeugen. So ist es möglich, den atmosphärischen Eintrag von Sauerstoff (im Stillstand) zu simulieren. Wird die Pumpleistung dann aktiviert, ist zudem die Verteilung bzw. der Transport des zuvor eingetragenen Sauerstoffs ersichtlich.

Zusammenfassung

Die hier vorgestellten Modellexperimente zur Thematik "Modellexperimente zur Sauerstoffverteilung in limnischen Systemen" liefern einen Beitrag, um komplexe Abläufe visuell und mit möglichst einfachen Mitteln für den Fort- und Weiterbildungsbereich im Bildungssektor didaktisch aufbereitet zur Verfügung zu stellen. Weitere Modellexperimente zur Sauerstoffverteilung in Gewässersystemen sind von Köppel (2013) entwickelt und detailliert beschrieben worden. Darüber hinaus hat Häusler (2012) für den Primar- und Sekundarbereich eine Reihe von Schulexperimenten zum Nachweis von Sauerstoff konzipiert.

Literatur

Häusler, S. (2012): Sauerstoff in Alltag und Umwelt – Entwicklung von Experimenten und Unterrichtsbausteinen für den naturwissenschaftlich orientierten Unterricht der 3.- 6. Jahrgangsstufe. Wissenschaftliche Hausarbeit, Pädagogischen Hochschule Karlsruhe (unveröffentlicht), 86 S.

Köppel, C. (2013): Visualisierung des Sauerstofftransportes in limnischen sowie marinen Gewässersystemen – Konzeption von Modellexperimenten zur Umweltbildung im naturwissenschaftlichen Unterricht. Wissenschaftliche Hausarbeit, Pädagogischen Hochschule Karlsruhe (unveröffentlicht), 65 S.

Kummert, R. und Stumm, W. (1992): Gewässer als Ökosysteme: Grundlagen des Gewässerschutzes. 3. Auflage: vdf Verlag der Fachvereine

Wild, A. und Schmitt, V. (2012): Biochemische und physiologische Versuche mit Pflanzen. 18. Auflage: Spektrum Akademischer Verlag

NITROLIMIT

BÖLLMANN, J., M. MARTIENSSEN & B. GRÜNEBERG: Vergleich der mikrobiellen Nitratreduktion in Sediment und Pelagial eines eutrophen Flusssees und eines mesotrophen geschichteten Sees

NIXDORF, B., J. RECKLEBE & G. LIPPERT: Nitrifikation im dimiktischen Scharmützelsee – Teil 1: Maximale Umsetzungen im Winter als Ökosystemdienstleistung

NIXDORF, B., M. NIEBISCH, G. LIPPERT & J. RECKLEBE: Nitrifikation im dimiktischen Scharmützelsee – Teil 2: Deep Nitrate Maximum als Ergebnis der sommerlichen hypolimnischen Ammoniumoxidation

RÜCKER, J., CH. HARRANDT & D. MIETHLING: Abschätzung von Phytoplanktonverlusten durch Muschelfiltration

THÜRMANN, J., B. GRÜNEBERG & B. NIXDORF: Umsätze und saisonale Dynamik relevanter Stickstoffkomponenten in einem eutrophen Flachsee (Langer See, Scharmützelseegebiet) – ein Bilanzansatz

TROMMER, G., M. POXLEITNER, E. BITZILEKIS, A. GOGALADZE, P. LORENZ & H. STIBOR: Influence of increased nitrogen deposition on lake systems – An experimental approach

Vergleich der mikrobiellen Nitratreduktion in Sediment und Pelagial eines eutrophen Flusssees und eines mesotrophen geschichteten Sees

Böllmann, Jörg*1, Marion Martienssen1, Björn Grüneberg2

¹Brandenburgische Technische Universität Cottbus, Lehrstuhl Biotechnologie der Wasseraufbereitung, Siemens-Halske-Ring 8, 03046 Cottbus, boellman@tu-cottbus.de

²Brandenburgische Technische Universität Cottbus, Lehrstuhl Gewässerschutz, Forschungsstelle Bad Saarow, Seestraße 45, 15526 Bad Saarow

Keywords: Denitrifikation, Zellzahlen, Michaelis-Menten-Kinetik, Limitationen, Jahreszeitliche Dynamik

Einleitung

Die Denitrifikation ist nach bisherigem Kenntnisstand der dominierende Prozess der Stickstoffelimination in Binnengewässern (z.B. Seitzinger 1988). Unter natürlichen Bedingungen kann der Prozess entweder nur punktuell gemessen oder großräumig bilanziert und damit lediglich näherungsweise erfasst werden, wobei weitere parallel ablaufende Prozesse eine separate Erfassung erschweren. Tatsächlich unterliegt der Prozess einer starken räumlichen und zeitlichen Variabilität. Im Rahmen des BMBF-Forschungsverbundes NITROLIMIT wurden 2011 und 2012 Jahresgänge für die Denitrifikationsraten im Sediment und Pelagial des Scharmützelsees und der Unteren Havel mit Hilfe eines reaktionskinetischen Modells nach Michaelis-Menten (Nixdorf et al. 2012) ermittelt. Die berechneten Raten fließen in die Stickstoff-Bilanzierung- bzw. Modellierung dieser Gewässer ein.

Material und Methoden

Der Scharmützelsee, ein mesotropher dimiktischer See mit max. 29,5 m Tiefe wurde hauptsächlich an der tiefsten Stelle bei Wendisch-Rietz untersucht. Die Untere Havel, ein eutropher Flusssee mit gelegentlichen kurzen Schichtungsphasen im Sommer, wurde auf Höhe Pichelsdorfer Gemünd (Stelle UHV1, 3 m Wassertiefe) und ca. 5 km flussabwärts bei Kälberwerder (UHV2, 7 m Wassertiefe) beprobt. Die Berechnung der *in situ* Nitratreduktionsraten erfolgte auf Basis eines mehrparametrigen Modells nach Michaelis-Menten (Nixdorf et al. 2012):

$$\frac{dc}{dt} = v_{sp} \times n \times \left(\frac{C_{NO_3}}{k_{NO_3} + C_{NO_3}}\right) \times \left(\frac{DOC}{k_c + DOC}\right) \times \left(\frac{1}{1 + \frac{C_{O2}}{ki}}\right) \times \theta^{T-R}$$

Dafür wurden die spezifischen Zellzahlen (n) in Sediment und Pelagial kultivierungsmethodisch als Most Probable Number (MPN) über den Jahresgang verfolgt (Böllmann et al. 2012, Remde und Tippmann 1998). Die zellspezifische Umsatzrate (v_{sp} 2,6·10⁻⁸ mg Zelle⁻¹·d⁻¹) und die Michaelis-

Menten-Konstante K_m des Substrates Nitrat (2,26 mg N L⁻¹) wurden in Laborversuchen anhand von Anreicherungskulturen unterschiedlicher Herkunft ermittelt. Weitere reaktionskinetische Parameter (k_c für DOC, 70 mg L⁻¹, K_i für Sauerstoff, 0,38 mg L⁻¹) wurden nach einer nochmaligen Verifizierung aus früheren Arbeiten (Martienssen et al. 1999) bzw. der Literatur entnommen (Temperaturkorrektur gem.ATV Arbeitsblatt A131). Aus den so ermittelten Denitrifikationskapazitäten (v_{sp} ·n) wurden mit Hilfe des Modells und der gemessenen Umweltparameter die *in situ* Umsatzraten abgeleitet. Das Modell konnte durch den Vergleich mit beobachteten Nitratumsätzen im Scharmützelsee validiert werden. Die Umrechnung der Umsatzraten auf die Fläche erfolgte über die gesamte Wassersäule (mittlere Tiefe Scharmützelsee = 9 m) bzw. die ersten 3 cm des Sedimentes, wobei Gradienten von Sauerstoff und Nitrat berücksichtigt wurden.

Ergebnisse

Scharmützelsee:

Im Pelagial des Scharmützelsees schwankten die ermittelten Zellzahlen der stoffwechselaktiven Nitratreduzierer im Jahresgang um bis zu zwei Zehnerpotenzen mit maximalen Werten von $9.3\cdot10^5$ L⁻¹ im August und $2.4\cdot10^6$ L⁻¹ im Oktober. Ähnliche Werte wurden z.B. von Tan & Overbeck (1973) für den vergleichbaren Plußsee gefunden. Die Nitratkonzentration war im Winter mit bis zu $400~\mu g$ N L⁻¹ am Höchsten (Abb. 2) und sank im Frühjahr auf Werte von ca. $70~\mu g$ L⁻¹, später im Epilimnion auf teilweise unter $10~\mu g$ L⁻¹. Im Hypolimnion stieg die Konzentration im Juni durch Nitrifikation (Nixdorf et al: dieser Band) wieder auf ca. $160~\mu g$ L⁻¹ und fiel dann im August ebenfalls unter $10~\mu g$ L⁻¹.

An der Sedimentoberfläche konnten im Frühjahr bis zu $2.3 \cdot 10^9$ Nitratreduzierer je Liter Sediment gemessen werden, im übrigen Jahresgang zwischen $4.3 \cdot 10^7$ und $4.3 \cdot 10^8$ L⁻¹. Die maximalen Nitratkonzentrationen lagen im Winter bei etwa 200 µg L⁻¹, die minimalen von Juni bis zur Durchmischung im November 5 µg L⁻¹. Basierend auf den gemessenen Zellzahlen interpoliert über die beiden Jahresgänge, den gemessenen Konzentrationen von Nitrat und gelöstem organischen Kohlenstoff (DOC) sowie der Temperatur, erhält man eine sehr dynamische Saisonalität der Denitrifikation (Abb. 2).

Im Sediment erfolgte laut Modell die Nitratreduktion im Wesentlichen von Dezember bis Ende April mit einem Maximum im März von bis zu 50 mg m $^{-2}$ d $^{-1}$ sowie kurzzeitig nochmals im Mai. Aus den errechneten Umsatzraten konnte über das Jahr integriert ein N-Jahresumsatz des Sedimentes von ca. 3,5 g m $^{-2}$ ermittelt werden.

Das Modell zeigt am untersuchten Standort eine Denitrifikation im Pelagial in zwei kurzen Zeitfenstern (Abb. 2) im Januar/Februar mit bis zu 2 mg m $^{-2}$ d $^{-1}$ (0,2 µg L $^{-1}$ d $^{-1}$) und hauptsächlich im Juli mit bis zu 2,4 mg m $^{-2}$ d $^{-1}$ (0,5 µg L $^{-1}$ d $^{-1}$), hier jedoch nur im Hypolimnion, das nach der Frühjahrszirkulation und Nitrifikation mit Nitrat angereichert ist.

Eine alternative Berechnung basierend auf dem Verlauf der Nitratkonzentration im Januar ergab eine Konzentrationsabnahme von 0.2 bis $1.2 \,\mu g \, L^{-1} \, d^{-1}$. Neben einer möglichen geringen assimilatorischen Stickstoffaufnahme kann dies mit den modellierten Denitrifikationsraten bei geringfügig angepassten Bakteriendichten $(5 \cdot 10^6 \, L^{-1})$ statt gemessenen $1.6 \cdot 10^6 \, L^{-1})$ gut abgebildet werden. Im anaeroben Hypolimnion im Jahr 2013 konnte eine Abnahme der Nitratkonzentration von ca. 10 $\mu g \, L^{-1} \, d^{-1}$ in einer Tiefe von 26 Metern beobachtet werden (Abb. 1). Das Modell errechnet mit gemessenen durchschnittlichen Bakterienzahlen des Hypolimnions $(2.3 \cdot 10^5 \, bis \, 9.3 \cdot 10^5 \, L^{-1})$ aus der zeitgleich gewonnenen Mischprobe eine Umsatzrate von nur 2 $\mu g \, L^{-1} \, d^{-1}$. Ein möglicher Einfluss des Sedimentes sowie eine Unterschätzung der Bakterienzahlen durch deren ungleichmäßige Verteilung

im Hypolimnion mit höheren Konzentrationen in nitratreicheren Schichten können diesen Unterschied erklären. Eine unter Berücksichtigung dieser Ungleichverteilung leicht erhöhte durchschnittliche Bakterienzahl von $5 \cdot 10^6 \, \text{L}^{-1}$ führt zur Übereinstimmung von Modell und Beobachtung.

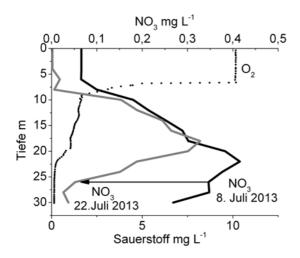


Abb. 1: Profile der Nitrat- und Sauerstoffkonzentrationen im Scharmützelsee (Wendisch Rietz) Juli 2013. Die Konzentrationsdifferenz in 26 Metern ergab eine Nitratabnahme von 10 µg L⁻¹ d⁻¹.

Für die Modellierung von maximal anzunehmenden Umsatzraten wurden daher korrigierte Zellzahlen verwendet (Abb. 2). Entsprechend ergibt sich aus den Jahresgängen 2011 und 2012 mit den gemessenen Zellzahlen ein Jahresumsatz von 0,15 g m⁻² Nitratstickstoff, mit den korrigierten Zellzahlen ein Umsatz von 0,72 g m⁻².

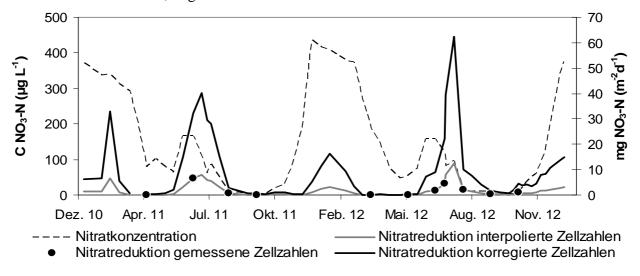


Abb. 2: Nitratreduktion im Hypolimnion im Scharmützelsee Standort Wendisch-Rietz mit gemessen und daraus interpolierten Zellzahlen sowie mit maximal anzunehmenden Zellzahlen nach den Resultaten aus 2013

Untere Havel

Die Zahlen der kultivierbaren Nitratreduzier im Pelagial der Unteren Havel zeigten eine Variabilität von bis zu 2,5 Zehnerpotenzen innerhalb eines Standortes, z.B. von $4\cdot10^8$ bis $1\cdot10^{10}\,L^{-1}$ am Standort UHV1 (Pichelsdorfer Gemünd). Hier lagen die Zellzahlen bis zu zwei Zehnerpotenzen höher als am Standort UHV2. Eine Saisonalität war nicht erkennbar. Im Sediment konnten am Standort UHV1 in beiden Sommern des Untersuchungszeitraumes maximale Zellzahlen von $2\cdot10^{10}\,L^{-1}$ gemessen werden, im Rest des Jahres maximal $5\cdot10^9$. Die Nitratkonzentrationen verliefen gegensätzlich zur Temperaturkurve (Abb. 3) mit maximalen Werten im Winter von 1700 bis 2200 µg L^{-1} und mini-

malen Werten im Sommer von 300 bis 700 $\mu g~L^{\text{-1}}$ (aber Maxima bis zu 1200 $\mu g~L^{\text{-1}}$) an beiden Untersuchungsstandorten.

Die Nitratreduktionsraten im Pelagial folgten sehr deutlich der Jahrestemperaturkurve mit maximalen Raten im Sommer von bis zu 15 $\mu g \ L^{-1} d^{-1}$ am Standort UHV1 (entspricht 44 mg m⁻²d⁻¹) und minimalen Werten im Winter von 0,1 $\mu g \ L^{-1} d^{-1}$ (0,3 mg m⁻² d⁻¹). Am abstromigen tieferen Standort UHV2 lagen die Denitrifikationsraten lediglich bei maximal ca. 1,8 $\mu g \ L^{-1} d^{-1}$ (13 mg m⁻²d⁻¹) im Sommer und unter 0,05 $\mu g \ L^{-1} d^{-1}$ im Winter. Im Sommer wurde die Denitrifikation zeitweise durch geringe Nitratkonzentrationen unter 500 $\mu g \ L^{-1}$ limitiert. Der errechnete Jahresumsatz betrug 4 g m⁻² am Standort UHV1 und 3,3 g m⁻² bei UHV2.

Im Sediment lag die Denitrifikationsrate im Winter aufgrund niedriger Temperaturen bei unter 10 mg m⁻²d⁻¹. Die Raten im Sommer schwankten stark zwischen 20 und 400 mg m⁻²d⁻¹, vor allem gesteuert durch die Nitratkonzentration, die zeitweise auf limitierende Werte sinkt. Es ergaben sich Jahresumsätze von 16 g m⁻² und 1,2 g m⁻² für Standort UHV1 und UHV2. Damit war das Sediment mit über 80 % and der Denitrifikation beteiligt.

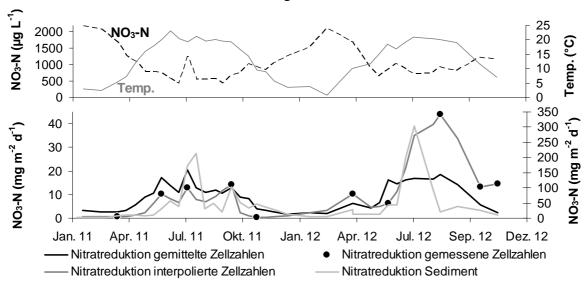


Abb. 3: Nitratreduktionsraten an der Unteren Havel Standort 1 Pichelsdorfer Gemünd gerechnet mit gemessenen und interpolierten Zellzahlen

Diskussion und Zusammenfassung:

Die Denitrifikation hängt im hohen Maße von der Gewässermorphometrie und wechselnden Limitationen ab. Die Denitrifikationsraten können dementsprechend über den Jahresgang und in verschiedenen Gewässertypen stark variieren. Auch Seitzinger (1988) listet eine große Bandbreite für Denitrifikationsraten in limnischen Systemen auf, mit starken Abhängigkeiten von Methode, Messzeitpunkt und Gewässercharakteristiken.

Im dimiktischen Scharmützelsee wird aufgrund der temporären Verfügbarkeit von Nitrat und der winterlichen Temperaturlimitation nur kurzzeitig im Jan./Febr. und nochmals im Hochsommer denitrifiziert, im Sediment sogar fast ausschließlich im Winter. Die alljährlichen beobachteten Nitratverluste im Pelagial des Scharmützelsees im März und April von bis zu 9,5 μ g L⁻¹ d⁻¹ liegen weit über den berechneten Denitrifikationsraten von maximal 0,02 μ g L⁻¹ d⁻¹. Abgesehen vom Umsatz des Sedimentes von bis zu 50 mg N m⁻²d⁻¹ ist der Nitratverlust in dieser Zeit überwiegend auf die Nitratassimilation durch starkes Algenwachstum zurückzuführen.

In der flachen und durchmischten Havel folgt die Denitrifikation ganzjährig der Temperaturkurve. Maximale Denitrifikationsraten im Sommer führen zu sinkenden Nitratkonzentrationen mit zeitweiser Nitratlimitation. Im Gegensatz zum Scharmützelsee werden in der Havel die Denitrifikationsraten offensichtlich stärker durch die eingetragenen Frachten als durch die reinen Nitratkonzentrationen bestimmt. Bei nahezu gleichen Nitratkonzentrationen wurden am Standort UHV1 bei höheren Stickstoffeinträgen auch deutlich höhere Umsatzraten ermittelt als am zweiten Standort. Die höheren N-Einträge bedingen hier höhere Bakterienkonzentrationen und entsprechend höhere Umsatzraten. Bei geringen Temperaturen im Winter verringert sich der Nitratumsatz und die Nitratkonzentrationen steigen an (Abb. 2).

Da Nitrat an beiden Messpunkten der Havel im Sommer kaum unter 500 µg L⁻¹ fiel, wird vermutet, dass unterhalb dieser Konzentration das System mit verringertem Wachstum der Denitrifikanten reagiert und somit durch geringere Denitrifikationsraten bei gleichbleibenden Frachten die Nitratkonzentration konstant bleibt. Es ist daher zu erwarten, dass in diesem Konzentrationsbereich geringere Stickstoffeinträge nur schwer eine Verringerung der Nitratkonzentration bewirken, die Wasserqualität mit der Zellzahl als Indikator jedoch durchaus verbessert werden kann.

Die oberen Sedimentschichten sind vor allem in der Havel auf Grund des besseren Austausches zwischen Freiwasser und Sediment sowie den höheren Konzentrationen von Nitrat, organisch gelöstem Kohlenstoff und Denitrifikanten maßgeblich an der Nitratreduktion beteiligt. Entscheidend für die Modellierung der Sedimentumsätze sind die zu Grunde liegenden Nitratkonzentrationen, welche durch neue Messverfahren (Gel-Peeper) präzisiert wurden.

Danksagung

Wir möchten uns bei den Förderern des Projektes, insbesondere dem BMBF (FONA, Förderkennzeichen: 033L041 A-G) und den Kooperationspartnern (Berliner Senat) bedanken. Für die Koordination, Probenahmen und Aufbereitungen gilt unser Dank den Herren Ingo Henschke, Holger Brandt und Erwin Banscher sowie den Mitarbeiterinnen im Labor in Cottbus Grau Herrmann, Frau Kral und Frau Pech, und in Bad Saarow Frau Abel und Frau Natusch.

Referenzen:

- Böllmann, J., Martienssen, M., Nixdorf, B. (2012) Stickstoffumsätze in unterschiedlichen Gewässertypen Berlin/Brandenburgs Teil 1: Zellzahlen von Nitrifikanten und Denitrifikanten. Erweiterte Zusammenfassung der Jahrestagung der DGL 2011 in Weihenstephan. Eigenverlag der DGL: 234-238
- Martienssen M., Schöps, R. (1999): Population dynamics of denitrifying bacteria in a model biocommunity. Water Res. 33: 639-646
- Nixdorf, B., Becker K., Grüneberg B., Böllmann J. Martienssen M. (2012) Stickstoffumsätze in unterschiedlichen Gewässertypen Berlin/Brandenburgs Teil 2: Erste Ergebnisse zu Einträgen und Umsätzen. Erweiterte Zusammenfassung der Jahrestagung der DGL 2011 in Weihenstephan. Eigenverlag der DGL: 239-244
- Remde, A. & P. Tippmann (1998). Mikrobiologische Charakterisierung aquatischer Sedimente Methodensammlung. Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM) (Hrsg.) Oldenbourg Verlag München, Wien.
- Seitzinger S. P. (1988): Denitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance. Limno. Oceanogr. 33 (4-2): 702-724
- Tan, T. L., & Overbeck, J. (1973): Ökologische Untersuchungen über nitratreduzierende Bakterien im Wasser des Plußsees (Schleswig-Holstein). Z Allg Mikrobiol, 13: 71–82.

Deutsche Gesellschaft für Limnologie (DGL) Erweiterte Zusammenfassungen der Jahrestagung 2013 (Potsdam-Berlin), Hardegsen 2014

Nitrifikation im dimiktischen Scharmützelsee – Teil 1: Maximale Umsetzungen im Winter als Ökosystemdienstleistung

Brigitte Nixdorf¹, Juliane Recklebe¹ & Gudrun Lippert¹

Keywords: Nitrifikation, dimiktischer See, Herbstzirkulation, Ammoniumoxidation, Chemotrophie

Einleitung

Nitrifikation ist eine wichtige Voraussetzung für die Elimination von Stickstoff in natürlichen Landund Gewässersystemen sowie in Kläranlagen und somit eine Ökosystemdienstleistung. Die Nitrolimit-Modellgewässer (http://www.nitrolimit.de/) Scharmützelsee und Langer See (Dahme-Einzugsgebiet) weisen folgende Dynamik der gelösten anorganischen Stickstoffkonzentrationen auf: Im Spätherbst steigen die Konzentrationen der gelösten anorganischen N-Fraktionen (DIN = NH₄ + NO₃ + NO₂) leicht phasenverschoben an, erreichen im Winter ein Maximum und fallen im Frühjahr des Folgejahres wieder bis auf minimale Werte zu Beginn der Vegetationsperiode ab. Dieses Verhalten ist im dimiktischen Scharmützelsee besonders ausgeprägt. Folgende Hypothese liegt dieser Studie zugrunde: Durch die Einmischung des hypolimnisch akkumulierten NH4 im Prozess der herbstlichen Vollzirkulation erhöht sich die Konzentration von Ammonium im gesamten Wasserkörper. Trotz geringer Temperaturen im Winter läuft die Nitrifikation ab und liefert damit ausreichende Nitratkonzentrationen für die Denitrifikation in der folgenden Vegetationsperiode. Im Rahmen dieser Studie sollen ausgehend von der Gesamtmenge des eingemischten NH₄ im See bis zum Frühjahr die Abnahme dieser Komponente und die Zunahme des NO₃ quantifiziert werden. Der Konkurrenzprozess, die assimilatorische DIN-Aufnahme, wurde bei diesen Betrachtungen wegen der geringen Primärproduktion im Winter vernachlässigt. Intensivmesskampagnen in den Wintern 2010/11 und 2012/13 werden durch die Auswertung der Langzeitdatensätze Scharmützelsees sowie durch eine monetäre Betrachtung der Ökosystemdienstleistung Nitrifikation ergänzt.

Material und Methoden

Im mesotrophen dimiktischen Scharmützelsee erfolgte 1993 - 2013 die Probenahme im monatlichen bis zweiwöchentlichen Rhythmus an der tiefsten Stelle (29 m) als volumengewichtete Mischprobe des Epi- und Hypolimnions bzw. der gesamten Wassersäule während der Vollzirkulation. Vom 23.10.2012 bis 17.12.2012 wurde wöchentlich beprobt. Hydrochemische (Nährstoffe gesamt und gelöst) und physikalische Parameter (T, O_2) wurden bestimmt. Die Nitratkonzentration ist als dominierende Komponente in der NO_g -Fraktion enthalten, die sich jeweils aus NO_3 und NO_2 zusammensetzt. Zur Kalkulation der Umsätze wurden Änderungsraten der einzelnen N-Komponenten für die Phasen vom NH_4 -Maximum zum NO_3 -Maximum für den Zeitraum 1993 – 2012 berechnet. Wegen

¹ Brandenburgische Technische Universität Cottbus-Senftenberg, Fakultät Umweltwissenschaften, Lehrstuhl Gewässerschutz, Bad Saarow, nixdorf@tu-cottbus.de

der relativ großen Messintervalle im Winter kann es zu einer Unterschätzung der Raten kommen. Die Messungen sind zwar auf das Pelagial beschränkt, schließen jedoch sedimentbezogene Umsätze in den Nettoänderungsraten der Nährstoffe ein. Nährstoffanalysen erfolgten mit Standardmethoden, die in Nixdorf et al. (dieser Band) beschrieben sind.

Ergebnisse und Diskussion

Konzentrationsverläufe von 1993 bis 2013 und kalkulierte Umsätze der Nitrifikation im Scharmützelsee

Der saisonale Verlauf der Konzentrationen der DIN Fraktionen ist in Abb. 1 beispielhaft für die Jahre 2010 und 2011 dargestellt (Bitte Skalierung beachten: Der Winter befindet sich in der Mitte der Zeitachse!). Die typische Saisonalität der DIN-Fraktionen wird ersichtlich: Das Ammoniummaximum im November nach Einmischung des hypolimnisch akkumulierten NH₄ wird phasenversetzt abgelöst von einem Nitratmaximum Ende Dezember / Anfang Januar 2011. Ein ähnliches Verhalten im Verlauf der DIN-Fraktionen ist typisch für weitere Seen der Region (Thürmann et al. dieser Band, Nixdorf et al. 2012, Dudel & Kohl 1992) sowie andere Gewässer (Kieler Bucht in Rheinheimer et al. 1988, Lough Neagh in Gibson et al. 1992). Im Untersuchungszeitraum 1993 - 2013 sind diese Phasen im Scharmützelsee jeweils von leichter Sauerstoffuntersättigung, geringen pH-Werten zwischen 7,2 und 8,4 und Temperaturen zwischen 2 und 11°C gekennzeichnet.

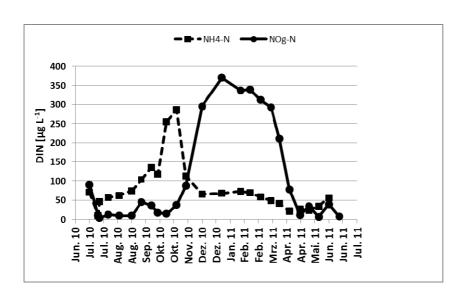


Abb. 1: Konzentrationsverläufe von DIN im Jahre 2010 und 2011 im Scharmützelsee

Die Mengen des gebildeten Nitrates und des verbrauchten Ammoniums sind für 2012/2013 im See in der Abb. 2 dargestellt Im Winter 2012/13 findet die Oxidation des Ammoniums in Perioden mit Temperaturen unter 4°C statt. Damit scheint die geringe Temperatur der am meisten limitierende Parameter für die winterliche Nitrifikation zu sein, was durch Experimente zur Intensivierung der Nitrifikation bei höheren Temperaturen gut demonstriert werden konnte (Recklebe 2013). In dieser Arbeit wurde auch eine erhöhte chemosynthetische Aktivität durch die nichtphotosynthetische Fixierung von radioaktivem NaH¹⁴CO₃ im Dunkeln gemessen.

Die Umwandlung von Ammonium in Nitrat im Winter 2012/13 erfolgte relativ schnell in einem Zeitraum von 2 - 3 Wochen (17.12.12 – 7.1.13). In dieser Zeit wurden über 40 t Nitrat aus Ammonium gebildet. Das entspricht einer flächenbezogenen Rate von 166 mg N m⁻² d⁻¹. Danach ist Am-

monium meist nur noch in Konzentrationen unter 100 µg L⁻¹ im See vorhanden. Damit wurde diese Phase im Winter als bedeutsame Periode der Nitrifikation in dimiktischen Seen identifiziert.

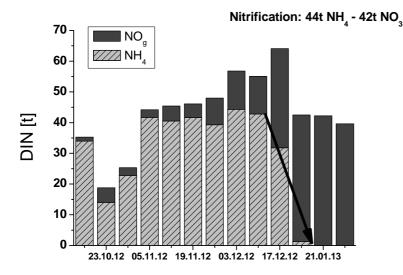


Abb. 2: Ammonium- und Nitratmengen im gesamten See von Oktober 2012 bis Februar 2013

Die aus den Änderungen der Nitrat- und Ammoniumkonzentration kalkulierten Raten für die Nettoänderung der Nährstoffkonzentrationen als Ausdruck für die Nitrifikationsraten sind in der Abb. 3 für den Zeitraum 1993 - 2012 dargestellt. Diese Raten (hier als Absolutwerte) betragen für den langjährigen Untersuchungszeitraum:

NH₄- N-Änderungsraten: 2 - 13
$$\mu$$
g L⁻¹ d⁻¹ = 18 - 116 mg m⁻² d⁻¹
NOg-N - Änderungsraten: 1 - 5 μ g L⁻¹ d⁻¹ = 9 - 45 mg m⁻² d⁻¹.

Unter Benutzung von Zellzahlen der Nitrifikanten und reaktionskinetischer Ansätze ermittelten Martienssen und Böllmann (mdl. Mitteilung) ähnliche Nitrifikationsraten für den Scharmützelsee in den Wintermonaten 2010 und 2011. Die ermittelten Raten sind vergleichbar mit den Werten aus der Literatur für den Lake Mendota und den Mono Lake sowie den Golf von Kalifornien (Small et al. 2013). Im Lake Mendota sind analog zum hypolimischen Nitratmaximum im Scharmützelsee (s. Nixdorf et al. dieser Band) die höchsten Nitrifikationsraten ebenfalls im Hypolimnion gemessen worden $(56-364~\mu g~L^{-1}~d^{-1})$.

Die Geschwindigkeit der Nitrifikation (Nitrifikationsrate) wird bestimmt durch:

- Ammoniumkonzentration, für die Halbsättigungswerte (k_m)-Werte für die Ammoniumoxidation zwischen 300 und 700 μg L⁻¹ angegeben werden. Dies bedeutet, dass in den meisten Gewässern mit Konzentrationen unterhalb von 1000 μg L⁻¹ NH₄-N die Nitrifikation substratlimitiert ist. Die Maxima der NH₄-Konzentration nach der herbstlichen Einmischung erreichen diese Werte nicht.
- Sauerstoffkonzentrationen unterhalb einer Konzentration von ca. 2 mg L⁻¹ wirken zunehmend limitierend (k_m-Werte für O₂ zwischen 0,5 und 1 mg L⁻¹). Diese Situationen treten während der Vollzirkulation im Herbst/Winter und unter Eis im Pelagial nicht auf.
- Temperatur und pH-Wert: Während das Temperaturoptimum (20-25°C) der Nitrifikation weit entfernt von den unwirtlichen winterlichen Bedingungen im See ist, liegt der pH-Wert im optimalen Bereich.

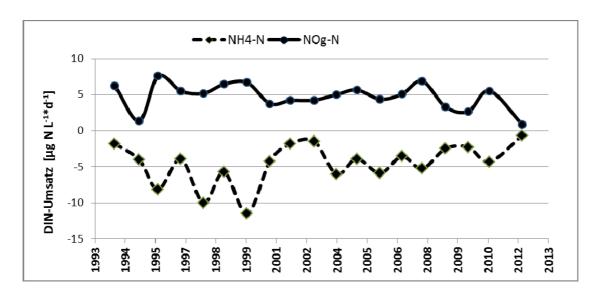


Abb. 3: Winterliche Umsatzraten durch Ammoniumoxidation und Nitratbildung im Scharmützelsee von 1993 bis 2012

Winterliche Nitrifikation im Scharmützelsee – eine Ökosystemdienstleistung?

Obwohl die Ammoniumoxidation in Gewässern verglichen mit technischen Kläranlagen auf den ersten Blick eher unbedeutend erscheint, erlangt sie doch erhebliche Bedeutung dadurch, dass aufgrund der deutlich längeren Verweilzeiten auch Ammoniumkonzentrationen oxidiert werden können, die in technischen Kläranlagen wegen der kinetischen Limitation nicht mehr mit vertretbarem Aufwand eliminiert werden. In dieser Studie werden nur pelagische Umsätze berücksichtigt, so dass ein technischer Vergleich sich auf Belebtschlammbecken beschränkt und Tropfkörper nicht in die Betrachtung einbezieht. Um Ammoniumkonzentrationen unterhalb von 100 µg L⁻¹ zu realisieren, wären in technischen Anlagen erhebliche Verlängerungen der Aufenthaltszeit (Faktor 5 bis 10) oder eine Vergrößerung der Anlagen um eben diesen Faktor erforderlich. Weiterhin ist auch die geringe Temperatur als limitierender Faktor der Nitrifikation zu beachten. Eine vollständige Ammoniumoxidation bei derart geringen Konzentrationen und Temperaturen kann mit hinreichender Rentabilität nur von der Natur selbst erbracht werden.

Kalkuliert man für die Nitrifikation in technischen Anlagen für einen Eintrag von 1 kg $O_2 = 0,42$ kWh Strom, so ergibt sich bei dem derzeitigen Strompreis von 0.15 Euro/kWh ein monetärer Wert von 0,27 Euro je kg nitrifiziertem NH₄-N. Der CO₂-Fußabdruck von 620 g CO₂-eq/kWh im deutschen Strommix entspricht dabei 1120 g CO₂-eq je kg nitrifiziertem NH₄-N. Für eine Gesamtmenge von 50 t nitrifiziertem Stickstoff im Scharmützelsee folgt aus diesen Kalkulationen ein "theoretischer" Service im Vergleich zur Kläranlage von 13545 Euro und 56 t CO₂-eq, die man sozusagen "gespart" hat.

Zusammenfassung

Nach der Einmischung des hypolimnisch akkumulierten Ammoniums in die gesamte Wassersäule des Scharmützelsees erreicht dieser sein Jahresmaximum der Ammoniumkonzentrationen. Diese liegen zwar im Bereich der Substratlimitation (km-Werte für die Ammoniumoxidation zwischen 300 und 700 µg L⁻¹), bilden aber trotz der minimalen Temperaturen (unter 5 °C) bei optimaler Sauerstoffversorgung die Grundlage für das Maximum der jährlichen Nitrifikation im See. Innerhalb weniger Wochen werden über 40 t Ammonium zu Nitrat umgewandelt. Damit ist eine optimale

Grundlage für die Elimination von Stickstoff aus dem System durch Denitrifikation gegeben. Aus den zeitlichen Mustern der DIN-Konzentrationen aus anderen Seen kann geschlussfolgert werden, dass die winterliche Nitrifikation ein Charakteristikum der Seen in der Norddeutschen Tiefebene ist.

Dieser Umsatz stellt eine ökologisch relevante Dienstleistung durch natürliche Ökosysteme dar. Im Vergleich dazu müssten Belebtschlammbecken von Klärwerken für vergleichbare Nitrifikationsleistungen bei derart niedrigen Temperaturen und Ammoniumkonzentrationen eine erhebliche technische Erweiterung bezüglich der Aufenthaltszeiten und/oder Flächen erfahren.

Danksagung

Wir möchten uns bei den Förderern des Projektes, insbesondere dem BMBF (FONA, Förderkennzeichen: 033L041 A-G) und den Kooperationspartnern (Berliner Senat) bedanken. Für die Koordination, Probenahmen und Aufbereitungen gilt unser Dank den Herren Ingo Henschke und Thomas Wolburg, sowie den Mitarbeiterinnen im Labor in Bad Saarow Frau Abel und Frau Natusch. Christian Remy vom KWB danken wir für die Kalkulationen der Klärwerkskosten.

Literatur

- Dudel, G. & Kohl, J.G. (1992). The Nitrogen Budget of a Shallow Lake (Großer Müggelsee, Berlin). Internationale Revue der gesamten Hydrobiologie und Hydrographie 77 (1):43-72.
- Gibson, C.E., Smith, R.V. & Stewart, D.A, (1992). The Nitrogen Cycle in Lough Neagh, N. Ireland 1975 to 1987. Internationale Revue der gesamten Hydrobiologie und Hydrographie 77 (1):73-83, 1992.
- Nixdorf, B., Niebisch, M., Recklebe, J. & Lippert, G. (2014). Nitrifikation im dimiktischen Scharmützelsee Teil 2: Deep Nitrate Maximum als Ergebnis der sommerlichen hypolimnischen Ammoniumoxidation. Erweiterte Zusammenfassung der Jahrestagung der DGL 2013 in Potsdam. Eigenverlag der DGL
- Nixdorf, B., Becker, K., Grüneberg, B., Böllmann, J., Martienssen, M. (2012). Stickstoffumsätze in unterschiedlichen Gewässertypen Berlin/Brandenburgs Teil 2: Erste Ergebnisse zu Einträgen und Umsätzen. Erweiterte Zusammenfassung der Jahrestagung der DGL 2011 in Weihenstephan. Eigenverlag der DGL, 239-244.
- Recklebe, J. (2013). Nitrifikation im Scharmützelsee im Herbst und Winter. Masterarbeit TU Cottbus. Rheinheimer, G.; Hegemann, W.; Raff, J.; Sekoulov (1988). Stickstoffkreislauf im Wasser, Stickstoffumsetzung in natürlichen Gewässern, in der Abwasserreinigung und Wasserversorgung.
 - Stickstoffumsetzung in natürlichen Gewässern, in der Abwasserreinigung und Wasserversorgung, Oldenbourg Verlag, München, Wien
- Small, G. E., Bullerjahn, G. S., Sterner, R. W. et al. (2013). Rates and control of nitrification in a large oligotrophic lake. Limnol. Oceangr. 58, 1: 276 286.

Thürmann, J., Grüneberg, B. & Nixdorf, B. (2014). Umsätze und saisonale Dynamik relevanter Stickstoffkomponenten in einem eutrophen Flachsee (Langer See, Scharmützelseegebiet) – ein Bilanzansatz. Erweiterte Zusammenfassung der Jahrestagung der DGL 2013 in Potsdam. Eigenverlag der DGL.

Nitrifikation im dimiktischen Scharmützelsee – Teil 2: Deep Nitrate Maximum als Ergebnis der sommerlichen hypolimnischen Ammoniumoxidation

Brigitte Nixdorf¹, Michael Niebisch¹, Gudrun Lippert¹ & Juliane Recklebe

Keywords: Nitrifikation, Tiefen-Nitrat-Maximum, dimktischer See, Sauerstoff, Ammonium

Einleitung

Nitrifikation ist ein Schlüsselprozess im N-Kreislauf und bestimmt die Verteilung der anorganischen N-Komponenten in Ökosystemen. Im marinen Bereich wurde nachgewiesen, dass Nitrifikation in der euphotischen Zone stattfinden kann (Small et al. 2013). Der Kenntnisstand zur Intensität und Dynamik der N-Umsatzprozesse in limnischen Systemen ist begrenzt und deshalb Gegenstand des Modules 2 im Projekt Nitrolimit (http://www.nitrolimit.de/). Die Nitrolimit - Untersuchungsgewässer weisen eine typische Dynamik der gelösten anorganischen Stickstoffkonzentrationen auf (s. Nixdorf et al. 2012 und 2014, Teil 1, dieser Band): Allen Verläufen ist eine Abnahme der DIN – Konzentrationen bis zum Sommer bzw. bis zum Herbst auf Werte z.T. unter der Nachweisgrenze gemeinsam. Im Herbst steigen die DIN – Konzentrationen wieder an. Der Scharmützelsee zeigt folgende Besonderheiten während der sommerlichen Stagnation: Während der Schichtungsperiode wurde ab Mai die Ausbildung eines Nitratmaximums infolge erhöhter Nitrifikation über dem Sediment gemessen. Diese Erscheinung wurde schon in Vorjahren bei der Ermittlung vertikaler Nährstoffverteilungen im Scharmützelsee beobachtet und 2013 intensiv untersucht.

In Abb. 1 sind mögliche Quellen und Senken für Ammonium und Nitrat zusammengestellt.

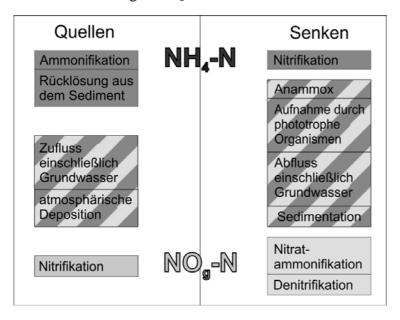


Abb. 1: Quellen und Senken für Nitrat und Ammonium in einem See (Recklebe 2013)

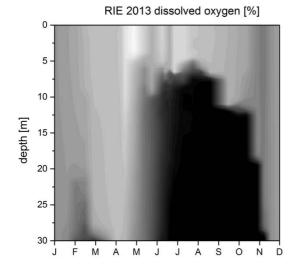
¹ Brandenburgische Technische Universität Cottbus-Senftenberg, Fakultät Umweltwissenschaften, Lehrstuhl Gewässerschutz, Bad Saarow, ², nixdorf@tu-cottbus.de

Das hypolimnische Nitratmaximum verlagerte sich während der Stagnation bis September 2013 in Richtung Metalimnion. Es wird postuliert, dass

- a) die gebildeten Nitratmengen das Ergebnis einer frühsommerlichen Nitrifikation über Grund und
- b) die Verlagerung und Elimination des Nitrates Folge einer Intensivierung der Denitrifikation im Hypolimnion sind (Böllmann et al., dieser Band). Die umgesetzten Mengen werden für den gesamten See kalkuliert und Raten der Nitrifikation berechnet.

Material und Methoden

Als Modellgewässer wurde der mesotrophe, dimiktische Scharmützelsee ausgewählt. Die Probenahme im Jahre 2013 erfolgte im zweiwöchentlichen Rhythmus an der tiefsten Stelle (29 m) als volumengewichtete Mischprobe des Epilimnions und ebenfalls volumengewichtet in 2 m-Abständen im Hypolimnion. Hydrochemische (Nährstoffe gesamt und gelöst) und physikalische Parameter (T, O₂) wurden bestimmt. Die Nitratkonzentration ist als dominierende Komponente in der NO_g-Fraktion enthalten, die sich jeweils aus NO₃ und NO₂ zusammensetzt.


Tabelle 1: Messmethoden zur Bestimmung der gelösten anorganischen N-Fraktionen

Konzentration	Methode		
$NO_g-N = NO_2 + NO_2$	photometrisch mit Fließanalysenautomat (ISO/EN/DIN 13395, 1996)		
NH ₄ -N	photometrische mit Indophenol (DIN EN ISO 11732-E 23, 2005)		

Ergebnisse und Diskussion

Schichtungsverhalten im Scharmützelsee 2013 anhand der Sauerstoffsättigung

In der Abb. 1 ist der Verlauf der Sauerstoffsättigung im Scharmützelsee für das Jahr 2013 dargestellt. Neben der thermischen Schichtung ist die Ausbildung von chemischen Gradienten in Seen eine wichtige Voraussetzung für Stoffumsätze. Das gilt insbesondere für Phasen sub- bzw. anoxischer Verhältnisse im Hypolimnion von Seen. Aus der Abb. 2 wird ersichtlich, dass ab Mitte Juni die hypolimnische Sauerstoffsättigung ins Minimum gerät und dieser Zustand bis Ende Oktober anhält. Die Grenze der Anoxie steigt dabei im Spätsommer bis in das Metalimnion (unter 7,5m).

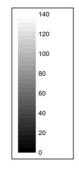
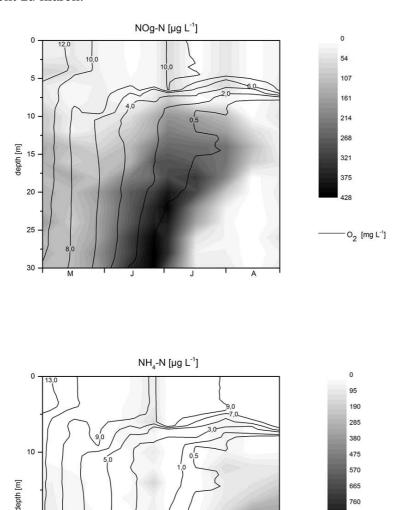



Abb. 2: Isoplethen der Sauerstoffsättigung im Scharmützelsee an der tiefsten Stelle bei Wendisch Rietz im Jahr 2013

Zeitliche und vertikale Dynamik der Nitrat- und Ammoniumkonzentrationen während der Sommerstagnation im Scharmützelsee

Zu Beginn der Schichtung ab Mai 2013 wird im Scharmützelsee die Ausbildung eines Nitratmaximums über Grund beobachtet (Abb. 2), das nur als Ergebnis einer Nitrifikation interpretiert werden kann. Erhöhte Konzentrationen von Ammonium über Grund bei ausreichender Sauerstoffverfügbarkeit bilden eine gute Basis für eine erhöhte Nitrifikation. Die Nitratkonzentrationen steigen bis Anfang Juli 2013 auf Werte über 400 µg L⁻¹ und haben eine vertikale Ausdehnung bis etwa unter 14 m mit Werten über 200 µg L⁻¹. In dem Maße, wie Sauerstoff im Hypolimnion ins Minimum gerät (Abb.1 und 2), verringern sich auch die Nitratkonzentrationen aufgrund einsetzender Denitrifikation bzw. durch Nitratammonifikation und das Maximum verlagert sich unter das Metalimnion. Ob die folgende hypolimnische Ammoniumakkumulation durch Ammonifikation, Nitratammonifikation bzw. Freisetzung aus den Sedimenten erklärt werden kann, ist mit dem Messansatz dieser Studie nicht zu klären.

20

Abb. 3: Isoplethendarstellung der Nitrat- und Ammoniumkonzentration an der tiefsten Stelle des Scharmützelsees von Mai bis Anfang September 2013 einschließlich der räumlichen und zeitlichen Ausdehnung der Sauerstoffkonzentration.

Anfang September ist praktisch kaum noch Nitrat in den tieferen Schichten vorhanden. Dagegen reichert sich das Ammonium im Hypolimnion auf maximale Werte von über 1712 µg L⁻¹ am 28.10.2013 über Grund an. Die

O₂ [mg L⁻¹]

hypolimnischen Ammoniumakkumulationen werden während der Herbstvollzirkulation wieder in den gesamten Wasserkörper eingemischt und verursachen das Jahresmaximum der Ammoniumkonzentration im See (Nixdorf et al., dieser Band).

Nitrifikation wird neben dem Vorhandensein ausreichender Ammoniumkonzentrationen in hohem Maße von der Verfügbarkeit durch Sauerstoff bestimmt. In der Abb. 2 sieht man deutlich, wie bei Verringerung der Sauerstoffsättigung das Nitratmaximum in Richtung Metalimnion wandert und die Ammoniumakkumulation zunimmt. Die Quellen- und Senkenprozesse für die einzelnen N-Spezies überlagern sich dabei und können auch kompensatorisch wirken.

In der Abb. 4 sind die Gesamtmengen für gelösten anorganischen Stickstoff (DIN) des Hypolimnions in t in der Schichtungsperiode 2013 für den Scharmützelsee dargestellt. Im Folgenden wird aus den Konzentrations- und Massenänderungen für Nitrat eine Nitrifikationsrate unter Berücksichtigung der einzelnen Volumenanteile des Sees kalkuliert. Für die Phase bis zum Erreichen eines absoluten sommerlichen Nitratmaximums im See am 8.7.2013 von 10 t (Hypolimnion unter 8 m Tiefe) bzw. 15 t (gesamte Wassersäule) ergeben sich durchschnittliche Nitrifikationswerte von 0,02 - 0,07 mg N m⁻² d⁻¹. Danach nimmt das Nitrat bis zum Erreichen des absoluten Nitratminimums im See am 2.9.2013 ab. Aus dieser Abnahme lassen sich Denitrifikationsraten für das Hypolimnion von 0,02 – 0,04 mg N m⁻² d⁻¹ abschätzen.

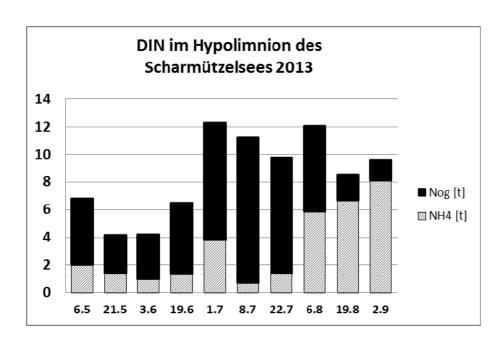


Abb. 4: Nitrat- und Ammonium – N als Masse (in t) im Hypolimnion des Scharmützelsees (unter 8 m Tiefe) in der Vegetationsperiode 2013.

In der Tabelle 1 sind publizierte volumenbezogene Nitrifikationsraten aus verschiedenen Gewässern zusammengestellt. Es wird deutlich, dass für limnische Systeme nur wenige Messungen existieren im Vergleich zum marinen Bereich. Die Werte für den Scharmützelsee liegen deutlich über denen aus dem Lake Superior und Mono Lake, sind aber weitaus geringer als die relativ hohen Raten aus dem Lake Mendota. Insgesamt zeigt die Übersicht die große Spanne der N-Umsatzraten, die zum einen durch morphometrische und chemische Charakteristika und zum anderen durch methodische Gegebenheiten verursacht werden können. Auch saisonale Aspekte müssen berücksichtigt werden, wie das Beispiel Scharmützelsee zeigt. Die Ergebnisse zur Vertikalverteilung der DIN-Fraktionen in geschichteten Gewässern (Beman et al. 2012, Lomas & Lipschultz 2006) belegen auch deutlich die Notwendigkeit zur höheren vertikalen Auflösung bei Prozessuntersuchungen im Pelagial.

Tab.1: Übersicht zu Nitrifikationsraten für unterschiedliche Gewässer zusammengestellt aus Small et al. (2013)* und Beman et al. (2012)# im Vergleich zu den Raten im Scharmützelsee. (Limnische Systeme = grau markiert)

Gewässer	Charakteristik	Charakteristik Nitrifikationsrate		
		[µg N L ⁻¹ d ⁻¹]		
Pazifik	oligotroph, flach	0,01		
	oligotroph, tief	0,01	Raimbault et al. 1999*	
	Upwelling	0,04		
Atlantik		0,01-0,14	Clark et al. 2008*	
Lake Superior	Epilimnion < 30m	0,00 - 0,49	Small et al. 2013	
	Hypolimnion > 30m	0,06-0,71		
Monterey Bay	flach	0,25-0,52	Ward 2005*	
	tief	0,27 - 1,39		
Golf von Kalifornien		0,56 - 1,12	Beman et al. 2008*	
Mono Lake		0,84 - 4,69	Carini & Joye 2008*	
Lake Mendota	Epilimnion	23,80 - 70	Hall 1986*	
	Hypolimnion	56,00 - 364		
Pazifik	GOC, ETNP	0,00-4,87	Beman et al. 2012	
Südpazifik	ETSP	4,03	Lipschultz et al. 1990#	
	ETSP	3,96	Ward et al. 1989#	
Benguela	Upwelling	3,67	Rees et al. 2006#	
Golf von Kalifornien	Upwelling	2,94	Santoro et al. 2010#	
Nord Pazifik	ETNP	1,92	Dore & Karl 1996#	
Südpazifik	ETSP	14	Molina & Farias 2009#	
Südpazifik	ETSP	68,60	Lam et al. 2009#	
Scharmützelsee	Winter	1 - 18	diese Studie	
	Hypolimnion	2,0-6,4		

ETSP – Eastern Tropical South Pacific, ETNP – Eastern Tropical North Pacific, GOC – Golf of California

Zusammenfassung

1. Zu Beginn der Sommerstagnation bildet sich im dimiktischen Scharmützelsee ein Nitratmaximum über Grund aus, das seine Ursache in einer erhöhten Nitrifikation aufgrund der guten Sauerstoffversorgung hat. Nitrifikationsraten von durchschnittlich 0,02 – 0,07 mg N m⁻² d⁻¹ wurden aus Änderungsraten der hypolimnischen Nitratkonzentrationsänderung kalkuliert, was einer Nitrifikation von ca. 10 t Stickstoff für den Scharmützelsee im Frühsommer entspricht.

- 2. Mit Zunahme sauerstoffzehrender Prozesse werden sub- bzw. anoxische Verhältnisse im Hypolimnion ab Mitte Juni erreicht, in deren Folge sich das Nitratmaximum in Richtung Metalimnion verschiebt. Durch Denitrifikation werden diese Nitratmengen im Verlauf des Hochsommers eliminiert und erreichen Anfang August ein Minimum im See in allen Schichten. Es lassen sich durchschnittliche Denitrifikationsraten von 0,02 0,04 mg N m⁻² d⁻¹ abschätzen.
- 3. Während der Stagnation akkumuliert Ammonium im Hypolimnion bis zu einem herbstlichen Maximum. In welchem Maße Nitratammonifikation, Ammonifikation organischer Substanz bzw. Freisetzung aus den Sedimenten an diesen Prozessen beteiligt sind, kann mit der angewendeten Analyse nicht beantwortet werden. Hierzu sollten künftig stabile Isotope eingesetzt werden.
- 4. Die Ergebnisse zeigen, dass in geschichteten Seen eine hohe vertikale Auflösung der Messungen in Verbindung mit volumengewichteten Probenahmen zur Erfassung hypolimnischer Nährstoffumsetzungen erforderlich ist.

Danksagung

Wir möchten uns bei den Förderern des Projektes, insbesondere dem BMBF (FONA, Förderkennzeichen: 033L041 A-G) bedanken. Für die Koordination, Probenahmen und Aufbereitungen gilt unser Dank den Herren Ingo Henschke und Thomas Wolburg, sowie den Mitarbeiterinnen im Labor in Bad Saarow Frau Abel und Frau Natusch und in Cottbus Frau Pech, Frau Krahl und Frau Herrmann.

Literatur

- Beman, J.M., Popp, B.N., Alford, S.E. (2012). Quantification of ammonia oxidation rates and ammonia-oxidizing archaea and bacteria at high resolution in the Gulf of California and eastern tropical North Pacific Ocean. Limnol. Oceanogr., 57: 711–726
- Böllmann, J., Martienssen, M., Grüneberg, B. (2014). Vergleich der mikrobiellen Nitratreduktion in Sediment und Pelagial eines eutrophen Flusssees und eines mesotrophen geschichteten Sees. Erweiterte Zusammenfassung der Jahrestagung der DGL 2013 in Potsdam. Eigenverlag der DGL:
- Böllmann, J., Martienssen, M., Nixdorf, B. (2012). Stickstoffumsätze in unterschiedlichen Gewässertypen Berlin/Brandenburgs Teil 1: Zellzahlen von Nitrifikanten und Denitrifikanten. Erweiterte Zusammenfassung der Jahrestagung der DGL 2011 in Weihenstephan. Eigenverlag der DGL: 234-238.
- DIN EN ISO 11732-E23, Mai (2005). Wasserbeschaffenheit Bestimmung von Ammoniumstickstoff Verfahren mittels Fließanalytik (CFA und FIA) und spektrometrischer Detektion
- DIN EN ISO 13395-D28, Dezember (1996). Wasserbeschaffenheit-Bestimmung von Nitritstickstoff, Nitratstickstoff und der Summe von beiden mit der Fließanalytik (CFA und FIA) und spektrometrischer Detektion (ISO 13395:1996).
- Hall, G.H. (1986) Nitrification in lakes. In J.I.Prosser [Ed.], Nitrification IRL Press, p. 127-156.
- Lomas, M.W., Lipschultz, F. (2006). Forming the primary nitrate maximum: Nitrifiers or phytoplankton? Limnol. Oceanogr. 51, 5: 2453-2467.
- Nixdorf, B., Becker, K., Grüneberg, B., Böllmann, J., Martienssen, M. 2012. Stickstoffumsätze in unterschiedlichen Gewässertypen Berlin/Brandenburgs Teil 2: Erste Ergebnisse zu Einträgen und Umsätzen. Erweiterte Zusammenfassung der Jahrestagung der DGL 2011 in Weihenstephan. Eigenverlag der DGL, 239-244.
- Nixdorf, B., Recklebe, J., Lippert, G. (2014). Nitrifikation im dimiktischen Scharmützelsee Teil 1: Maximale Umsetzungen im Winter als Ökosystemdienstleistung. Erweiterte Zusammenfassung der Jahrestagung der DGL 2013 in Potsdam. Eigenverlag der DGL
- Recklebe, J. (2013). Nitrifikation im Scharmützelsee im Herbst und Winter. Masterarbeit TU Cottbus.
- Small, G. E., Bullerjahn, G. S., Sterner, R. W. et al. (2013). Rates and control of nitrification in a large oligotrophic lake. Limnol. Oceangr. 58, 1: 276 286..

Deutsche Gesellschaft für Limnologie (DGL) Erweiterte Zusammenfassungen der Jahrestagung 2013 (Potsdam-Berlin), Hardegsen 2014

Abschätzung von Phytoplanktonverlusten durch Muschelfiltration

Jacqueline Rücker¹, Christian Harrandt¹ & Dominik Miethling¹

Keywords: Unionidae, Dreissena polymorpha, Filtration, Seen, Kartierung, ArcGIS

Einleitung

Im Rahmen des BMBF-Verbundprojektes NITROLIMIT (www.nitrolimit.de), das sich mit der Frage beschäftigt, ob Stickstoffreduktion in Binnengewässern ökologisch sinnvoll und wirtschaftlich vertretbar ist, sollen für vier Modellgewässer Stickstoffbilanzen aufgestellt werden. Dafür ist auch eine Abschätzung der Phytoplankton- bzw. Stickstoffverluste durch die Aktivität filtrierender Organismen, also Zooplankton und Muscheln notwendig. Der vorliegende Beitrag beschäftigt sich mit der Abschätzung der Phytoplanktonverluste durch Muschelfiltration, denn es wird beobachtet, dass die Verbesserung der Wasserqualität in vielen Gewässern mit einer Ausbreitung von Muschelbeständen einhergeht. Das betrifft sowohl heimische Großmuschelarten (Unionida) als auch die neozoische Dreikantmuschel *Dreissena polymorpha*. Daten zu Muschelbeständen in Seen sind jedoch rar und eine Abschätzung ihres Einflusses auf das Phytoplankton ist daher kaum möglich. 2011 wurden in den vier Modellgewässern Scharmützelsee (SCH), Müggelsee (MUEG), Langer See bei Prieros (LAN) und einem Abschnitt der Unteren Havel zwischen Pichelsdorfer Gmünd und Krughorn (UHAV) einmalig die Muscheln kartiert. Aus der Abundanz und Größenverteilung der einzelnen Muschelarten wurde ihre potenzielle Filtrationsleistung berechnet und aus der Summe der Filtrationsleistungen der Phytoplanktonverlust abgeschätzt.

Material und Methoden

Untersuchungsgebiet

Die NITROLIMIT-Modellgewässer repräsentieren dominante Gewässertypen der Region Berlin/Brandenburg. Wichtige morphmetrische und trophische Kenngrößen sind Tab. 1 zu entnehmen.

Kartierung und Berechnung der Muschelabundanzen

Die Muschelkartierungen fanden im Sommer 2011 gemeinsam mit Makrophytenkartierungen an denselben, gleichmäßig um die Gewässer verteilten Transekten statt (Rücker et al. 2012). Im Langen See, Müggelsee und der Unterhavel wurden die Muscheln auf Grund der schlechten Unterwasser¬sichtverhältnisse im Mai/Juni 2011 an Hand von Greiferproben (Greiferfläche 1000 cm²) untersucht. Pro Transekt und Tiefenstufe (0-1, 1-2, 2-4...8-10 m) wurde das Material aus 1 bis 2 Greifern an Bord gesiebt und die Arten und Anzahl der Muscheln bestimmt. Das Transekt wurde senkrecht zum Ufer abgefahren und so lange Greiferproben entnommen, bis keine lebenden Mu-

¹ Brandenburgische Technische Universität Cottbus – Senftenberg, Lehrstuhl Gewässerschutz, Seestrasse 45, 15526 Bad Saarow, E-mail: j.ruecker@tu-cottbus.de

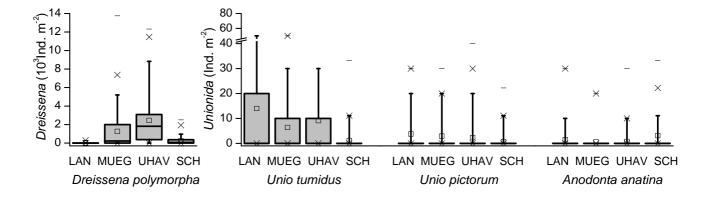
scheln mehr gefunden wurden. Für alle Seen wurden einheitlich pro Art jeweils 2 Größenklassen unterschieden. Als Klassengrenze wurde 1 cm Schalenlänge bei *Dreissena polymorpha* gewählt, bei den anderen Arten, die alle zur Ordnung Unionida gehören, 5 cm.

Im Scharmützelsee wurde die Muschelhäufigkeit während der Tauchgänge zur Makrophyten-detailkartierung im August/September 2011 aufgenommen. Die Angabe der Muschelhäufigkeit erfolgte pro Transekt und Tiefenstufe nach einer 5stufigen Skala (sehr selten, selten, verbreitet, häufig; Stufe 5 = massenhaft kam nicht vor). Außerdem haben die Taucher die untere Ausbreitungsgrenze lebender Muscheln ermittelt. Da für die Taucher die Arbeitszeit unter Wasser begrenzt ist, wurden nur stichprobenartig Direktzählungen durchgeführt, d.h. von 1 – 6 repräsentativen Flächen pro Transekt wurden die Muscheln mit Hilfe eines Metallrahmens von 30 x 30 cm Größe abgesammelt. An Bord wurden die Muscheln den Arten und Größenklassen zugeordnet und gezählt.

Die Fläche der Seen wurde mit Hilfe von ArcGIS in sogenannte Transektfelder eingeteilt, um die punktförmigen Daten der Transektkartierungen auf die Fläche zu projizieren. Wenn mehrere Greiferproben pro Transektfeld untersucht worden waren, wurden die Abundanzen gemittelt. Fehlende Abundanzwerte wurden durch Mittelung aus Werten benachbarter Flächen ergänzt (Miethling 2012; Harrandt 2012a). Die Abundanzen für jede Muschelart und Größenklasse wurden mit der Transektfeldfläche multipliziert und aufsummiert.

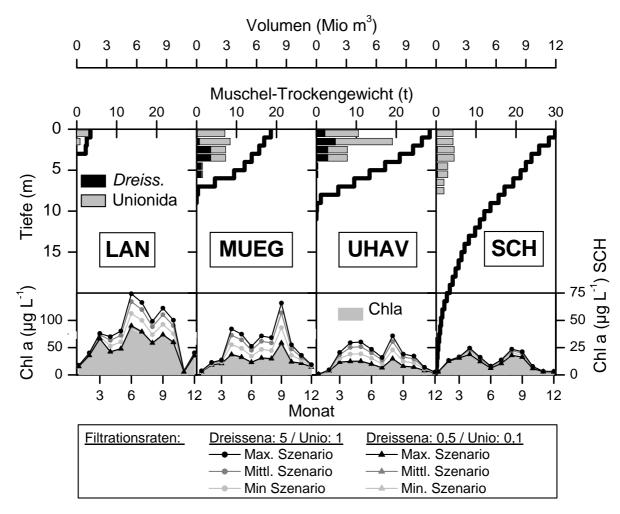
Tab. 1: Morphometrische Parameter der Untersuchungsgewässer, theoretische Aufenthaltszeit (t_a), Gewässertyp nach EU-Wasserrahmenrichtlinie (WRRL; Matthes et al. 2002), trophischer Zustand nach LAWA (1999), Zahl der untersuchten Transekte für die Kartierung. ¹Grüneberg et al. (2010), ²Köhler et al. (2005), ³Lindim, pers. Mitt.

	Scharmützelsee ¹	Müggelsee ²	Langer See	Unterhavel
Abkürzung	SCH	MUEG	LAN	UHAV
Fläche (km²)	12,1	7,3	1,3	27
Uferlänge(km)	30,3	14,8	8,4	ca. 42
max. Tiefe (m)	29,5	8,9	3,5	10,7
mittl. Tiefe (m)	8,9	4,9	2,1	ca. 4,8
$t_a(a)$	10,7	0,1-0,16	0,1	0,02-0,2 3
Mixistyp	dimiktisch	poly-/di.	polymiktisch	polymiktisch
WRRL-Typ	13	11.1	11.2	12
Trophie	mesotroph	eutroph	eutroph	eu- bis poly- troph
Anzahl Transekte	50	25	15	50


Berechnung von Szenarien der Muschelfiltration

Für die Berechnung des potenziellen Einflusses der Filtration durch Muscheln auf die Phytoplanktonbiomasse (hier betrachtet als Chlorophyll a (Chl a)) wurden an Hand von eigenen Filtrationsexperimenten (Harrandt, 2012a, b, Müller 2011) und Literaturbefunden verschiedene Annahmen gemacht. Die auf Basis der Kartierung ermittelten Gesamtabundanzen der Tiere (Miethling 2012, Harrandt, 2012a) wurden über artspezifischen Schalenlängen-Trockengewichts-Beziehungen aus der Literatur (vgl. Harrandt, 2012a) unter Annahme einer mittleren Schalenlänge für die entspre-

chende Größenklasse (0,5 cm bzw. 1,5 cm für Dreissena sowie 2,5 cm bzw. 7,5 cm für Unionida) in Trockengewicht (des Fleischkörpers) umgerechnet. Es wurden drei verschiedene Filtrationsraten angenommen, die die Spanne von Literaturwerten und eigenen Messungen abbilden: 0,5; 3,5; 5,0 L h⁻¹ g⁻¹ TG für *Dreissena* bzw. 0,1; 0,3; 1,0 L h⁻¹ g⁻¹ TG für die Unionida. Die Kalkulationen basierten auf den Monatsmitteln der Chl-a-Konzentrationen der 4 Modellgewässer von 2011, wobei das Seevolumen bis in die Tiefenstufe betrachtet wurde, in der Muscheln vorkamen (Müggelsee und Unterhavel 0 – 6 m, Langer See 0 – 4 m). Beim Scharmützelsee wurde jedoch nur die Tiefe 0 – 8 m berücksichtigt, da in der Tiefenstufe 8 – 10 m erstens nur noch wenige Muscheln vorkamen und zweitens die Sauerstoffkonzentrationen in den Sommermonaten den kritischen Wert für Muscheln von 30 % (Amler et al. 2000) unterschritten, so dass man von einer eingeschränkten Muschelaktivität in dieser Zone ausgehen kann. Der Einfluss der Wassertemperatur auf die Filtrationsaktivität wurde in Form eines Temperaturaktivitätsfaktors berücksichtigt (0,2 bei Temperaturen unter 5 °C im Januar bis März; 0,5 bei 5 -10 °C im November und Dezember; 1,0 bei Temperaturen über 10 °C von April bis Oktober. Aus den Langzeitversuchen von Harrandt (2012b) ergab sich, dass die Muscheln nicht den ganzen Tag aktiv filtrieren. Daher wurde ein weiterer Aktivitätsfaktor eingeführt, der die Basis für ein Minimum- (Faktor 0,4), mittleres (0,7) und Maximumszenario (0,9) bildete.


Ergebnisse

In allen vier Gewässern kamen *Dreissena polymorpha*, *Unio tumidus* und *Unio pictorum* sowie *Anodonta anatina* vor. Abbildung 1 zeigt die Verteilung der Muscheldichten (Beide Größenklassen wurden jeweils summiert.) an allen untersuchten Probenahmepunkten. *Dreissena* erreichte die größten Dichten in Havel und Müggelsee (Mittelwert (MW) 2,4 bzw. 1,2; Maximalwerte (Max.) 12,3 bzw. 13,8x10³ Individuen m⁻²). Demgegenüber wurden im Scharmützelsee nur maximal 2300 und im Langen See 300 Tiere m⁻² gefunden (MW 256 bzw. 10). Neben der höheren Trophie könnte der Mangel an Hartsubstraten, den *Dreissena* zum Festheften braucht, ein Grund für die geringe Abundanz im LAN sein. Weniger Probleme mit dem schlammigen Sediment hatte offensichtlich *Unio tumidus*, die im LAN die höchsten Individuendichten erreichte (MW 13,3, Max. 100 Tiere m⁻²), gefolgt von MUEG und UHAV mit ähnlichen Individuendichten (MW 6,2 bzw. 9,1; Max. 50 bzw. 110 m⁻²) und den geringsten Werten im SCH (MW 1,1; Max. 33 m⁻²). *Unio pictorum* erreichte deutlich niedrigere Werte (LAN: MW 3,8; Max. 30; MUEG: MW 2,8; Max. 30; UHAV: MW 2,3; Max. 40; SCH: MW 0,7; Max. 22,2 Tiere m⁻²). Im Gegensatz zu den beiden *Unio*-Arten wurden die höchsten Individuendichten von *Anodonta* im Scharmützelsee gefunden (SCH: MW 3,1; Max. 33; LAN: MW 1,4; Max. 30; UHAV: MW 0,8; Max. 30; MUEG: 0,6; Max. 20).

Abb. 1: Box-Wisker-Plots der Individuendichten (m⁻²) für alle Arten und Probenahmepunkte in den vier NITROLIMIT-Modellgewässern 2011. Abkürzungen der Seenamen, siehe Tab. 1. Box: 25 u. 75% Perzentile, Wisker 5 u. 95 % Perzentile, Kreuze 1 u. 99 % Perzentile, waagerechte Striche Maxima.

Die Tiefenausbreitungen und Biomassen von *Dreissena* und den Unionida sind in Abbildung 2 dargestellt. Muscheln lebten im LAN bis auf Einzelfunde bis in 2 m Tiefe, in MUEG und UHAV überwiegend bis in 4m Tiefe. Im Scharmützelsee wurden lebende Muscheln bis in 8,5 m Tiefe gefunden. Die Gesamtbiomasse der Muscheln wurde für *Dreissena* wie folgt geschätzt: LAN: 11kg, SCH: 1,8 t; MUEG: 10,2 t und UHAV: 12,6 t Trockengewicht. Für die Unionida ergab die Schät-

zung: LAN: 3,9 t; SCH: 31,4 t; MUEG: 34,2 t und UHAV: 46,1 t.

Abb. 2: Oben: Volumina der Tiefenstufen der 4 Modellgewässer (Linien). Trockengewicht von Dreissena polymorpha (Dreiss.) und Unionida (Säulen) 2011. Unten: Monatsmittel der Chlorophyll-a-Konzentration (Chl a; graue Flächen) sowie theoretische Erhöhung dieser Werte entsprechend der Szenarien der Muschelfiltration.

Im unteren Teil von Abbildung 2 ist der jahreszeitliche Verlauf der Chl-a-Konzentration in den 4 Modellgewässern 2011 (Monatsmittelwerte) dargestellt sowie seine theoretische Erhöhung unter der Annahme unterschiedlicher Filtrationsleistungen der Muscheln (je drei Szenarien mit unterschiedlichem Aktivitätsfaktor bei Annahme von 2 verschiedenen Filtrationsraten). Es zeigt sich ein größerer Einfluss der Muschelaktivität in den Sommermonaten, der sich aus dem höheren Tempera-

tur-Aktivitätsfaktor ergibt. Es wird ersichtlich, dass die Muscheln in UHAV und MUEG das größte Potenzial zur Eliminierung von Phytoplankton und damit Nährstoffen aus dem Wasserkörper haben (61 % bzw. 56 % im Jahresmittel), gefolgt vom LAN (38 %) und SCH (23 %).

Diskussion

Die Berechnung der Szenarien macht die Unterschiede im potenziellen Einfluss der Muschel-filtration auf die Biomasse des Phytoplanktons deutlich, die sich in erster Linie aus der unterschiedlichen Individuendichte und dem jeweiligen Verhältnis zwischen Wasservolumen (wobei hier nur das Volumen des mit Muscheln besiedelten Bereiches berücksichtigt wurde) und Muschelbiomasse ergeben. Diese Betrachtungen zeigen jedoch auch, dass, selbst unter Annahme der Minimum-Szenarien, die Muscheln einen substanziellen Beitrag zur Elimination von Stickstoff und Phosphor aus dem Wasser leisten können.

Für die Szenarien wurde bewusst eine große Spannweite in den Parametern gewählt, um die Größenordnung des Muscheleinflusses abzubilden. Einige Unsicherheiten bzgl. der Datengrundlage sollen jedoch noch kurz erwähnt werden. Sie ergeben sich zum einen daraus, dass die Verteilung der Muscheln eine sehr große Patchiness aufweist, die nicht vollständig erfasst werden kann. So beobachteten die Taucher im Scharmützelsee, dass die Großmuscheln vor allem in makrophytenfreien Bereichen vorkamen. Auf der anderen Seite konnten mit den verwendeten Beprobungsmethoden keine an submersen Makrophyten anhaftenden Dreissena erfasst werden. Beim Scharmützelsee könnte es nach Lorenz (pers. Mitt.) auf Grund des Probenahmetermins im Spätsommer zu einer Unterschätzung der Unionida gekommen sein, da sich insbesondere kleine Tiere zu dieser Jahreszeit tief im Gewässergrund eingraben. Unberücksichtigt bei den Betrachtungen bleibt die Tatsache, dass Muscheln bei einem Überangebot von Nahrung Partikel in Form von Pseudofäces unverdaut ausscheiden. Dadurch kommt es zu einer Anreicherung von organischem Material an Muschelbänken, die wiederum Stoffumsatzprozesse und mikrobielle Aktivitäten beeinflussen. Die Aktivität und Fitness der Tiere ist eine weitgehend unbekannte Größe, die in dieser Studie nicht genauer untersucht werden konnte. Bei den Unionida aus dem Langen See fiel auf, dass die Wachstumsringe viel dichter und die Tiere im Durchschnitt kleiner als im Scharmützelsee waren. Das deutet auf ein langsameres Wachstum und eine verringerte Vitalität hin. Eine Ursache könnten die (zu) hohen Dichten von Phytoplankton, insbesondere von potenziell toxischen Cyanobakterien, sein. In viel befahrenen Gewässern wie der Havel kann die Filtrationsaktivität der Muscheln außerdem durch den Bootsverkehr beeinträchtigt sein (Lorenz 2012).

Zusammenfassung/Schlussfolgerungen

Muscheln können einen substanziellen Beitrag zur Phytoplankton- und Nährstoffelimination aus dem Pelagial von Seen leisten. Die Größe ihres potenziellen Einflusses hängt jedoch vom Verhältnis des Wasserkörpervolumens zur muschelbesiedelten Fläche, aber auch von der Artzusammensetzung, der Individuendichte und der Fitness der Tiere ab. Es muss ferner berücksichtigt werden, dass die wenig ortsveränderlichen Tiere nur einen begrenzten Aktionsradius haben und Sekundäreffekte wie die Anreicherung von Nährstoffen in Muschelbänken ebenfalls die Wasserqualität beeinflussen.

Danksagung

Die Studie entstand im Rahmen des BMBF-Verbundprojektes NITROLIMIT (FKZ 033L041A). Die Kartierungen wurden vom Büro lanaplan unter der Leitung von Dr. Klaus Van de Weyer und seinen Kollegen Patrick Tigges, Egbert Korte, Frank Pätzold und Sebastian Meis durchgeführt. Für die Unterstützung bei den ArcGIS-Arbeiten danken wir Egbert Gassert (LS Hydrologie und Wasserwirtschaft, BTU Cottbus). Lisa Müller, Lea Kunz und Paulina Urban danken wir für die Durchführung der Filtrationsversuche sowie Stefan Lorenz (IGB Berlin) für die fachliche Diskussion.

Literatur

- Amler, M., Fischer R. & Rogalla N. (2000): Muscheln, Enke im Georg Thieme Verlag, 2000, Stuttgart, Germany.
- Grüneberg, B. Rücker, J., Nixdorf, B., Behrendt, H. (2011): Dilemma of Non-Steady State in Lakes Development and Predictability of In-Lake P Concentration in Dimictic Lake Scharmützelsee (Germany) after Abrupt Load Reduction. Internat. Rev. Hydrobiol. 96 (5): 599–621.
- Harrandt, C. 2012a: Abschätzung der Verluste des Phytoplanktons durch Muschelfiltration. BTU-Cottbus, Bachelor Thesis.
- Harrandt, C. 2012b: Langzeitversuche zur Bestimmung von Filtrationsraten heimischer Großmuscheln bei verschiedenen Temperaturen. BTU-Cottbus, Studienprojekt.
- Köhler, J., Hilt, S., Adrian, R., Nicklisch, A., Kozerski, H.P., Walz, N. (2005): Long-term response of a shallow, moderately flushed lake to reduced external phosphorus and nitrogen loading. Freshw. Biol. 50: 1639-1650.
- LAWA (Länder-AG Wasser 1999): Gewässerbewertung Stehende Gewässer. Vorläufige Richtlinie für eine Erstbewertung von natürlich entstandenen Seen nach trophischen Kriterien. Kulturbuchverlag, Berlin.
- Lorenz, S., Dobra, N., Pusch, M. 2012: Modelling the impacts of recreational boating on self-purification activity in a lowland river. Submitted to Freshwater Science.
- Mathes, J., Plambeck, G. & Schaumburg, J. (2002): Das Typisierungssystem für stehende Gewässer in Deutschland mit Wasserflächen ab 0,5 km² zur Umsetzung der Wasserrahmenrichtlinie. Aktuelle Reihe BTU Cottbus 5/2002, 15-24.
- Miethling, D. 2012: Abschätzung der Muschelabundanz in Müggelsee, Langem See und Unterhavel auf der Basis von Transektkartierungen. BTU-Cottbus, Studienprojekt.
- Müller, L. 2011: Bestimmung von Filtrationsraten der im Scharmützelsee vorkommenden Muschelarten, BTU-Cottbus, Bachelor Thesis.
- Rücker, J., Weyer, K. van de, Nixdorf, B., (2013): Kann Nährstoffkonkurrenz durch submerse Makrophyten die Biomasseentwicklung des Phytoplanktons beeinflussen? Erweiterte Zusammenfassung der Jahrestagung der DGL 2012 in Koblenz. Eigenverlag der DGL, Hardegsen. 346-350.
- Weyer, K. van de, Tigges, P., Korte, E., Pätzold, F., Meis, S., Becker, E. 2012: Vegetationskartierung des Scharmützelsees, des Großen Müggelsees, der Unteren Havel und des Langer Sees im Rahmen des Projektes Nitrolimit im Jahr 2011. unveröff. Endbericht.

Deutsche Gesellschaft für Limnologie (DGL) Erweiterte Zusammenfassungen der Jahrestagung 2013 (Potsdam-Berlin), Hardegsen 2014

Umsätze und saisonale Dynamik relevanter Stickstoffkomponenten in einem eutrophen Flachsee (Langer See, Scharmützelseegebiet) – ein Bilanzansatz

Thürmann, Jens¹, Grüneberg, Björn² & Nixdorf, Brigitte²

¹Technische Universität Bergakademie Freiberg, Student; jens.thuermann@googlemail.com, ²Brandenburgische Technische Universität Cottbus-Senftenberg, Fakultät Umweltwissenschaften, Lehrstuhl Gewässerschutz, 15526 Bad Saarow, Seestr. 45; nixdorf@tu-cottbus.de; bjoern.grueneberg@tu-cottbus.de

Keywords: Stickstoffbilanz, Stickstoffumsatz, Nitrolimit, Flachsee

Einleitung

Einer der wichtigsten Nährstoffe im limnischen Lebensraum ist neben Phosphor, Stickstoff (N). Er kommt in den Oxidationsstufen von -3 (NH₃) bis +5 (NO₃⁻) vor und unterliegt einer Vielzahl von Umsatzprozessen. Die Wichtigsten sind die Ammonifikation, die Nitrifikation, die Denitrifikation, die Stickstofffixierung und die Assimilation von anorganischem Stickstoff. Weitere Umsatzprozesse sind die anaerobe Ammoniumoxidation (Anammox) und die dissimilatorische Nitratreduktion zu Ammonium (DNRA). Durch die Denitrifikation und die Stickstofffixierung ist der N-Kreislauf im Gegensatz zum Phosphorkreislauf zur Atmosphäre hin offen.

In welchem Maße Seen Senken bzw. Quellen für den Nährstoff Stickstoff sein können, wird im Folgenden anhand der jahreszeitlichen Dynamik von Stickstoff und seinen Umsatzprozessen in einem eutrophen Flachsee untersucht. Relevante Einträge und Verluste werden in einem Bilanzansatz anhand der Nettoänderungsraten für die wichtigen N-Komponenten analysiert und bewertet.

Untersuchungsgewässer, Material und Methoden

Untersuchungsgewässer

Der Lange See ist ein eutrophes und flaches Standgewässer im Scharmützelseegebiet und gehört nach Wasserrahmenrichtlininie dem Gewässertyp 11.2 an. Er besitzt eine Durchschnittstiefe von 2,1 m, eine Fläche von 1,4 km² und hat eine Wasseraufenthaltszeit von 33 Tagen. Sein Einzugsgebiet (EZG), in welches auch die Kläranlage Storkow (24 000 Einwohnergleichwerte) entwässert, erstreckt sich über 393 km² (MONERIS, Behrendt et al. 1999). Im Jahresdurchschnitt liegt seine Gesamtstickstoffkonzentration bei 1,1 mg l⁻¹, seine Gesamtphosphorkonzentration bei 69 µg l⁻¹ und seine Chlorophyll-a-Konzentration bei 90 µg l⁻¹. Die durchschnittliche Sichttiefe beträgt circa 60 cm. Er ist von Cyanobakterien der Gattungen Oscillatoriales und Nostocales dominiert (Nixdorf et al. 2009).

Material und Methodik

Es wurden Daten aus den Jahren 2000 bis 2012 ausgewertet. Zur Berechnung der N-Nettoänderungsraten wurden die wesentlichen Ein- und Austragspfade von Stickstoff für das Versuchsgewässer identifiziert. Danach wurden die Frachten für die N-Parameter (Gesamtstickstoff: TN, Nitrat- und Nitritstickstoff: NOg-N, Ammoniumstickstoff: NH4-N, gelöster anorganischer Stickstoff: DIN = NO_g-N + NH₄-N, organischer Stickstoff: N_{org} = TN - DIN) ermittelt. Für den Oberflächenzufluss wurden zuerst die Tagesfrachten berechnet. Dies geschah indem die monatlich vorliegenden Konzentrationsdaten des Zulaufs linear interpoliert und mit den Tagesdurchflüssen multipliziert wurden. Daraus wurden anschließend Monatsfrachten berechnet. Der N-Austrag durch den Oberflächenabfluss wurde analog berechnet und die Konzentration des Sees (14-täglich bis monatlich) sowie der Seeabfluss hierfür zugrunde gelegt. Für die atmosphärische Deposition wurde der Wert des europäischen Modells MAPESI 1300 mg m⁻² a⁻¹ genutzt (Builtjes et al. 2011). Der diffuse N-Eintrag aus dem direkten EZG des Langen Sees wurde durch Herunterskalierung der durchschnittlichen N-Einträge des gesamten EZG abgeschätzt. Schließlich erfolgte die Berechnung der Nettoänderungsraten durch Addition bzw. Subtraktion der monatlichen Zu- und Ablauffrachten.

Die identifizierten N-Pfade für den Langen See sind in **Fehler! Verweisquelle konnte nicht gefunden werden.** dargestellt. Nicht alle Pfade konnten im Bilanzierungsansatz berücksichtigt werden. Die Berücksichtigten sind in der Abbildung fett dargestellt.

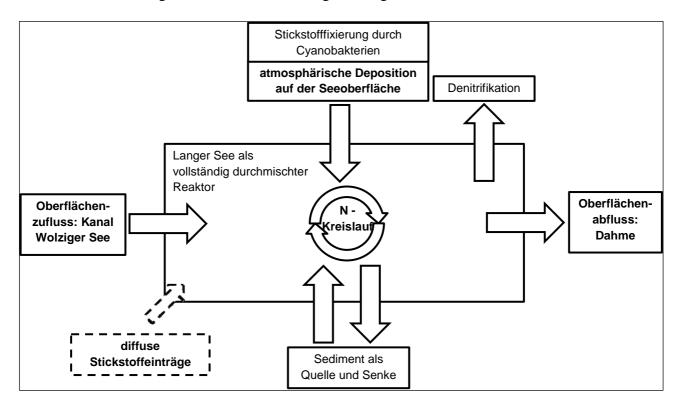


Abbildung 1: Identifizierte N-Pfade für das Gewässer Langer See bei Dolgenbrodt. Die im Bilanzansatz berücksichtigten N-Pfade sind fett dargestellt.

Ergebnisse und Diskussion

Die im Folgenden dargestellten Ergebnisse sind als arithmetische Mittelwerte der N-Parameter im Untersuchungszeitraum zu verstehen. Innerhalb des untersuchten Zeitraumes traten große Schwankungen auf. Qualitativ ergab sich aber ein charakteristisches Bild für den Jahresverlauf der verschiedenen N-Parameter.

Der Zufluss stellt mit 94 % des N-Eintrags über das gesamte Jahr den dominierenden Eintragspfad dar (Abbildung 2), wie dies für einen See mit kurzer Wasseraufenthaltszeit zu erwarten war. Von diesen 94 % sind 9 % auf die Kläranlage Storkow zurückzuführen. In den Wintermonaten Oktober bis März ist die N-Flächenlast rund 2,5mal höher als im Sommer (April bis September). Dies ist zum großen Teil mit dem deutlich erhöhten Zufluss von anorganischem N zu erklären. Der erhöhte Zufluss ist auf ein erhöhtes Zuflussvolumen, aber auch auf erhöhte Nährstoffkonzentrationen im Zufluss zurückzuführen.

Die Untersuchungen zur Zusammensetzung des See-Stickstoffhaushaltes im jahreszeitlichen Verlauf ergaben zwei Hauptaussagen (Abbildung 3). Erstens dominiert im Sommer N_{org} und DIN ist nur in geringen Konzentrationen vorhanden. Zweitens steigt im Herbst und Winter NH_4 -N und leicht zeitversetzt NO_g -N an. Im Frühjahr sinken sie wieder auf das niedrige Sommerniveau.

Die berechneten Nettoänderungsraten für TN und DIN sind in Abbildung 4 dargestellt. Positive Raten bedeuten Rückhalt durch Transformation (z.B. Assimilation), Elimination (z.B. Denitrifikation) und Akkumulation im Sediment, negative Raten stehen für die Zunahme einer Verbindung im Wasser (z.B. Nitrifikation oder Rücklösung aus dem Sediment). Es ist zu sehen, dass der See fast ganzjährig als Nettosenke fungiert. Lediglich im Mai und Juni kommt es zu nennenswerten Netto-Freisetzungen von TN. Freisetzungen von DIN wurden in den Monaten Dezember und Januar beobachtet. Das restliche Jahr ist der See eine Nettosenke für DIN.

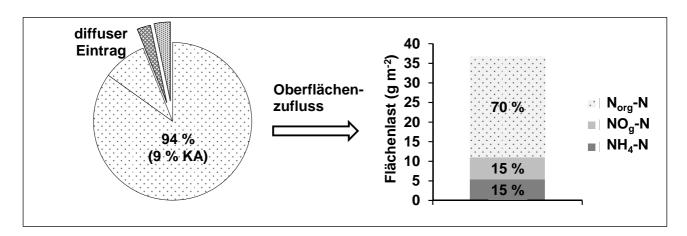


Abbildung 2: Quantität der N-Eintragspfade und Zusammensetzung des Oberflächenzuflusses im Jahresmittel. (KA – Kläranlage; NO_g -N = Summe Nitrat und Nitrit)

Die Interpretation der Nettoänderungsraten (vgl. Abbildung 4) ergibt folgendes Bild:

- Von März bis Oktober ist neben der Denitrifikation die Assimilation von Stickstoff dominierend. Anzeiger hierfür sind die DIN- und die TN-Retention bis zu 40 bzw. 100 mg N m⁻² d⁻¹ und der Anstieg der Phytoplankton-Biomasse.

- Von November bis Januar ist die Nitrifikation vorherrschend. Es kommt zur Bildung von Nitrat durch Oxidation von Ammonium, das im Herbst und Winter aufgrund erhöhter Ammonifikation entsteht.
- Von Januar bis April ist neben der Assimilation die Denitrifikation ein wichtiger N-Umsatzprozess. Es kommt zur Retention von TN und DIN bei gleichzeitiger Abnahme der Gesamtkonzentration von TN.
- Während von Oktober bis März die N-Retention des Sees bei durchschnittlich 30 mg TN m⁻² d⁻¹ liegt, ist die Nettobilanz in den Sommermonaten ausgeglichen.

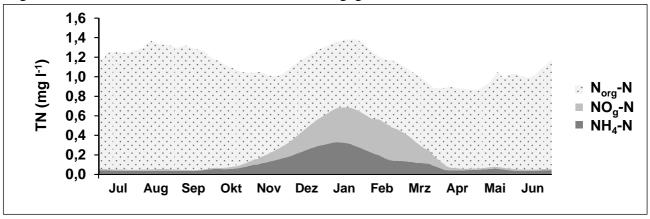


Abbildung 3: Organischer und anorganischer Stickstoff im jahreszeitlichen Verlauf.

Die Retention ist wohl in erster Linie auf den Umsatzprozess der Denitrifikation zurückzuführen. Zu ähnliche Ergebnissen kamen Dudel und Kohl (1992) bei der Untersuchung des Müggelsees. Auch Jensen et al. (1992) kamen bei ihren Untersuchungen zum Ergebnis, dass die Denitrifikation mit 86-93 % hauptursächlich für den N-Verlust ist. Bei den Untersuchungen von Jensen et al. war die N-Elimination im dritten Quartal des Jahres am höchsten. Dies ist aus den Untersuchungen für den Lagen See nicht abzuleiten.

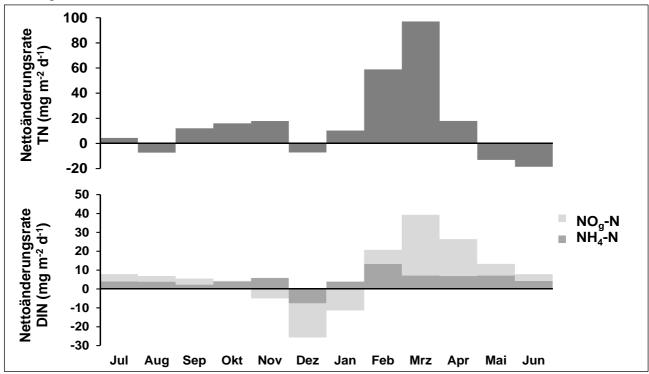


Abbildung 4: Nettoänderungsraten von TN und DIN im Monatsintervall.

Bei der Bewertung der Ergebnisse ist zu beachten, dass es sich immer um die Nettoänderungsraten der N-Parameter im Pelagial handelt. Diese sind das Ergebnis von sich überlagernden Umsatzprozessen. Es können somit nur die dominierenden Prozesse abgeleitet werden. Als wichtigster seeinterner Verlustprozess wurde wiederholt Denitrifikation identifiziert, nur ein kleiner Anteil der N-Zulauffracht wird dauerhaft im Sediment akkumuliert (Jensen et al. 1992; Dudel und Kohl 1992). Durch die Überlagerung der Umsätze kann es zur Maskierung von Prozessen kommen (z.B. Ammonifikation). Eine genaue Bestimmung von Umsatzraten erfordert mikrobiologische oder isotopentechnische Methoden. Des Weiteren ist die Sedimentation als kurzzeitiger Zwischenspeicher für Stickstoff mit zu beachten.

Danksagung

Die dargestellten Ergebnisse und Interpretationsansätze sind im Rahmen meiner Bachelorarbeit im Winter 2012/2013 an der Brandenburgischen Technischen Universität Cottbus entstanden. Die Bachelorarbeit wurde vom Lehrstuhl Gewässerschutz betreut und war im Verbundprojekt Nitrolimit eingebettet.

Die Grundlage für die Arbeit bildeten umfangreiche Datenreihen der Brandenburgischen Technischen Universität Cottbus, des Landesamtes für Umwelt, Gesundheit und Verbraucherschutz Brandenburg und des Wasser- und Schifffahrtsamtes Berlin.

Vielen Dank an alle Datengeber, Helfer und Unterstützer. Die vielen Anregungen und konstruktiven Gespräche haben die Arbeit sehr bereichert.

Literatur/ Quellen

- Behrendt, H.; Huber, P.; Opitz, D.; Schmoll, O.; Scholz, G.; Uebe, R. (1999): Nährstoffbilanzierung der Flussgebiete Deutschlands. Hg. v. Umweltbundesamt. (75/99)
- Builtjes, P.; Hendriks, E.; Koenen, M.; Schaap, M.; Banzhaf, S.; Kerschbaumer, A.; Gauger, T.; Nagel, H. D.; Scheuschner, T.; Schlutow, A. (2011): Erfassung, Prognose und Bewertung von Stoffeinträgen und ihren Wirkungen in Deutschland. Hg. v. Umweltbundesamt. (38/2011)
- Dudel, G., Kohl, J. G. (1992): The Nitrogen Budget of a Shallow Lake (Großer Müggelsee, Berlin). Internationale Revue der gesamten Hydrobiologie und Hydrographie 77 (1):43-72.
- Jensen, J. P., Jeppesen, E., Kristensen, P., Christensen P. B., and Martin Søndergaard, M. (1992): Nitrogen Loss and Denitrification as Studied in Relation to Reductions in Nitrogen Loading in a Shallow, Hypertrophic Lake (Lake Søbygård, Denmark). Internationale Revue der gesamten Hydrobiologie und Hydrographie 77 (1):29-42.
- Nixdorf, B., Vedder, F., Poltz, J. & Mietz, O. (2009): Ressourceneffizienz (Chla/TP) des Phytoplanktons und Lichtregime in Flachseen. Erweiterte Zusammenfassung der Jahrestagung der DGL 2008 in Konstanz. Eigenverlag der DGL: 236-241.

Deutsche Gesellschaft für Limnologie (DGL) Erweiterte Zusammenfassungen der Jahrestagung 2013 (Potsdam-Berlin), Hardegsen 2014

Influence of increased nitrogen deposition on lake systems – An experimental approach

Gabriele Trommer, Monika Poxleitner, Eleftherios Bitzilekis, Alexandre Gogaladze, Patrick Lorenz & Herwig Stibor

Ludwig-Maximilians-Universität München/Department Biologie II, Aquatische Ökologie, Großhaderner Str. 2, 82152 Martinsried-Planegg, trommer@bio.lmu.de

Keywords: nitrogen, fertilization, phosphorus limitation, phytoplankton, zooplankton

Introduction

The global amount of reactive forms of nitrogen (NOx und NHx) is due to the rising anthropogenic demand of food and fossil fuels steadily increasing. Reactive forms of nitrogen are easy and widely distributed over atmospheric transportation and are continuously supplied into ecosystems, where they accumulate locally to substantial amounts. Commonly, the influence of increased atmospheric nitrogen deposition is studied in nitrogen limited freshwater systems, where effects on water quality changes can be observed directly. However, in phosphorus limited freshwater systems as lakes, in which enhanced nitrogen supply leads to an increase in phosphorus limitation, the effects are less obvious and difficult to predict. Nonetheless, since most lakes are indeed phosphorus limited (Hecky & Kilham 1988), it is of main importance to unravel possible consequences of increased nitrogen deposition on phosphorus limited plankton systems with regard to future implications.

Material and methods

In order to quantify the effects of atmospheric nitrogen deposition on plankton communities in phosphorus limited lakes, we performed so-called mesocosm experiments from 27.03. – 28.05.2013 in three lakes of different trophic stages. The lakes (lake Brunnsee, lake Klostersee and lake Thalersee) are located in the Chiemgau region in Upper Bavaria and are all naturally phosphorus limited. The dissolved nitrogen (N) to phosphorus (P) ratios range from >200:1 N:P (lake Thalersee) to >2000:1 (lake Brunnsee) and are clearly higher than the classical Redfield ratio of 16:1 N:P. In the mesocosm experiments in each lake, the natural phyto- and zooplankton community was enclosed in 12 four meter deep PE-bags and fixed to an anchored raft in the respective lake. The enclosures were open to the atmosphere and a transparent covering ensured natural light conditions while the nitrogen deposition via precipitation could be controlled. Increasing nitrogen deposition through precipitation was simulated in a gradient of six nitrogen treatments (once replicated) starting from no nitrogen deposition to 32 – times the regional, natural nitrogen deposition (Fig. 1). The nitrogen deposition, based on 25 1/m² of weekly precipitation in the region, constitutes on average of 75 mg/m² nitrate (NO₃) and 25 mg/m² ammonium (NH₄). The fertilization was done twice a week by addition of one liter of freshly prepared nitrogen solution respective for each treatment (stock solution 30 mg/ml NaNO₃, 10 mg/ml NH₄Cl). Mixing was achieved with a Secchi disc.

The sampling was done once a week for water chemistry and zooplankton analyses. The phytoplankton analyses were performed twice a week with an AlgaeLabAnalyser (bbe moldaenke). For the sampling of the mesocosms, we used an integrated water sampler (KC Denmark A/S) from 1-3 m depth, which was pre-filtered over a 250 μ m mesh before analyses, and a zooplankton net with 12 cm diameter and 105 μ m mesh size.

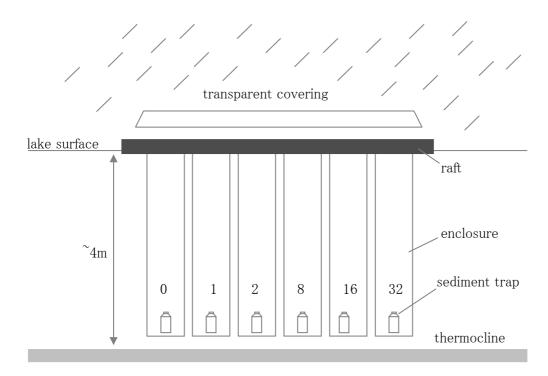


Fig. 1: Experimental design of the mesocosm experiments with the schematic raft, the transparent covering, six mesocosms and sediment traps. Numbers indicate the respective nitrogen treatment, which was replicated once: 0: no nitrogen deposition; 1: natural atmospheric nitrogen deposition via precipitation of the region; 2, 8, 16, 32: 2-, 8-, 16- and 32-times the natural nitrogen deposition via precipitation.

Results and discussion

The nitrogen deposition gradient was successfully established in the experiments of each of the three lakes. At the end of the experiments, significant increasing linear regression slopes of NO_3 and NH_4 concentrations with increasing nitrogen fertilization were achieved ($r^2>0.98$ and p<0.001 in each experiment). However, different intercepts and regression slopes indicate a different nutrient assimilation of NO_3 and NH_4 between the lakes.

In terms of phytoplankton groups, in none of the lakes we observed differences in the taxonomical community composition between the nitrogen treatments. Similarly, in the seston stoichiometry neither a consistent trend along the nitrogen gradient between the lakes nor an increase in phosphorus limitation could be observed. In lake Thalersee, the C:N ratio decreased with nitrogen fertilization (p<0.05), indicating an increase of particulate N in relationship to POC. In lake Brunnsee, the N:Si ratio increased with nitrogen fertilization (p<0.01). Interestingly, the maximum or average phyto-

plankton biomass, as chlorophyll a, increased significantly on the one hand in lakes Brunnsee and Thalersee (p<0.05 respectively) and decreased on the other hand in lake Klostersee (p<0.05) with increasing nitrogen fertilization (Fig. 2). In lake Brunnsee, the additional observation of an increasing diatom biomass and N:Si ratio with higher nitrogen fertilization points to an excellent nitrogen assimilation of the diatoms even under higher phosphorus deficiency.

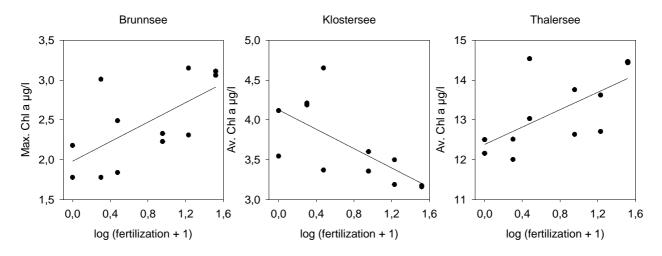


Fig. 2: Relationships of phytoplankton biomass with nitrogen fertilization: displayed are maximum reached chlorophyll a values (μ g/l) of lake Brunnsee, and average chlorophyll a values (μ g/l) of lakes Klostersee and Thalersee. Linear regression lines are significant on p<0.05.

The zooplankton analyses showed in all lakes in all taxa (except rotifers) a trend towards lower zooplankton densities in the two highest nitrogen fertilization treatments. In lake Brunnsee, the relationship with nitrogen fertilization was significantly unimodal in total individual and copepod densities amongst others (Table 1). In lakes Klostersee and Thalersee, significantly decreasing linear regressions with nitrogen fertilization were observed in cladocerans and in Thalersee also in total individual densities (Table 1).

Table 1: Relationships of zooplankton densities with nitrogen fertilization. Statistical results of Gauss fits (Brunnsee) and linear regressions (Klostersee, Thalersee) of log-transformed zooplankton densities. Specified are values of the parameters of scale (b) and slope (a), the coefficient of determination (r²) and the statistical probability (p).

Lake	Zooplankton density	Statist. analysis	Parameter	\mathbf{r}^2	р
Brunnsee	Total individuals	Gauss, 3 param.	b: 1.75	0.02	< 0.05
Brunnsee	Copepoda	Gauss, 3 param.	b: 1.70	0.02	< 0.05
Klostersee	Cladocera	Lin. regression	a: -0.09	0.05	< 0.05
Thalersee	Total individuals	Lin. regression	a: -0.15	0.08	< 0.01
Thalersee	Cladocera	Lin. regression	a: -0.15	0.05	< 0.05

The decreasing trends of zooplankton densities in lakes Brunnsee and Thalersee seem to refer to "top-down" effects, which might explain the increasing phytoplankton biomass with fertilization. Through reduced grazing, the phytoplankton biomass could reach higher concentrations under high-

er nitrogen fertilization despite an enhanced phosphorus deficiency. In lake Klostersee, a different mechanism seem to affect the plankton system, which is "bottom-up" controlled. The enhanced phosphorus deficiency under higher nitrogen fertilization must have led to lower phytoplankton biomass, although grazing pressure due to lower zooplankton densities was reduced.

Conclusions

The increased nitrogen deposition simulation in the mesocosm experiments had different effects on the individual lake systems, but led in summary to reduced zooplankton densities under highest nitrogen deposition. The only straightforward option in case of lake Klostersee could be that with increasing nitrogen fertilization, the zooplankton was deprived of its food source, which is the diminished phytoplankton biomass, and accordingly decreased in densities. However for all lakes, a directly affecting phosphorus limitation or toxicity of nitrogen components in higher concentrations could be a reason for decreasing zooplankton densities. Nitrogen deposition was already shown to increase the phosphorus limitation of zooplankton in Norway (Elser et al. 2010). Since the seston stoichiometry, as indicator of food quality for zooplankton, shows no indication of enhanced phosphorus limitation, the enhanced phosphorus limitation, as well as a probable nitrogen toxicity seem to impact the mesozooplankton indeed directly.

Acknowledgements

We thank A. Wild, A. Weigert, M. Feissel and W. Brosch for all technical support. S. Behl, S. Schultes, S. Hammerstein and staff of the town Seeon are acknowledged for their help in setting up the experiments. This study is part of a project funded by the Deutsche Forschungsgemeinschaft (TR 1126/1-1).

Literature

Hecky, R. E., Kilham, P. (1988): Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment. Limnology and Oceanography, 33: 796-822.

Elser, J., Peace, A. L., Kyle, M., Wojewodzic, M., McCrackin, M. L., Andersen, T., Hessen, D. O. (2010): Atmospheric nitrogen deposition is associated with elevated phosphorus limitation of lake zooplankton. Ecology Letters, 13: 1256-1261.

GRUNDWASSER, QUELLEN

HOHMANN, I. & P. MARTIN: Untersuchungen zur Besiedlung anthropogen beeinträchtigter Quellen in Schleswig-Holstein

MARTIN, P. & L. WISCHNIOWSKY: Kalktuffquellen: Ein FFH-Lebensraum ohne Charakterarten in der Limnofauna?

REISS, M.: Mind the summit trap? Kaltstenotherme Arten und die Folgen des Klimawandels im Mittelgebirge

Deutsche Gesellschaft für Limnologie (DGL) Erweiterte Zusammenfassungen der Jahrestagung 2013 (Potsdam-Berlin), Hardegsen 2014

Untersuchungen zur Besiedlung anthropogen beeinträchtigter Quellen in Schleswig-Holstein

Isabel Hohmann & Peter Martin

Zoologisches Institut, Abteilung Limnologie; Christian-Albrechts-Universität zu Kiel, Olshausenstraße 40, 24098 Kiel; isi.hohmann@googlemail.com; pmartin@zoologie.uni-kiel.de

Keywords: Quellen, Norddeutsches Tiefland, Quellfauna, Degradation, Schleswig-Holstein

Einleitung

In Schleswig-Holstein finden bereits seit Anfang des 20. Jahrhunderts Untersuchungen an Quellen statt (vgl. Martin 2012). Größtenteils handelt es sich hierbei um naturnahe Waldquellen, die im Rahmen vieler Arbeiten als artenreiche Ökotone charakterisiert werden konnten. Außerdem wurden anhand einer Auswahl wenig degradierter QuellenLeitbilder für verschiedene Quelltypen nebst Charakterarten der Fauna beschrieben (z.B. Martin & Brunke 2012). Eine Bewertung von Quellen im Norddeutschen Tiefland ist anhand ihrer faunistischen Besiedelung über eine Präsenz-Absenz-Überprüfung von Indikatorarten möglich. Das Fehlen solcher Arten deutet auf eine Störung des Lebensraumes hin, jedoch können keine oder nur wenige Aussagen über den Grad der Störung und Beeinträchtigung gemacht werden. In Schleswig-Holstein wie auch in großen Teilen Deutschlands ist der Kenntnisstand über die Besiedelung anthropogen beeinflusster Quellen sehr gering.

In der hier vorgestellten Masterarbeit (Hohmann 2014) wurden erstmals für Schleswig-Holstein gezielt anthropogen beeinträchtigte Quellen hinsichtlich ihrer Struktur, Abiotik und Fauna untersucht. Im Folgenden werden Teilergebnisse zur Struktur und Fauna im Hinblick auf folgende Hypothesen dargestellt:

- I. Die Strukturbewertung zeigt klare Unterschiede zwischen den Degradationstypen
- II. Es besteht ein klarer Zusammenhang zwischen dem Zustand der Quellstruktur und der faunistischen Besiedelung. Je stärker die Quellstruktur verändert ist, desto quellfremder ist die Quellfauna.
- III. Im Vergleich zu anderen, bereits untersuchten Waldquellen im selben Naturraum sollten die hier untersuchten degradierten Quellen eine quelluntypischere Fauna aufweisen.

Material und Methoden

Untersuchungsgebiet

Die untersuchten Quellen liegen im Naturraum und der Fließgewässerlandschaft Östliches Hügelland im Osten Schleswig-Holsteins. Insgesamt wurden eine naturnahe Quelle sowie elf beeinträchtigte Quellen untersucht. Die Zahl der Quellen verteilt sich auf folgende Kategorien: Totalver-

bau/Fassung: 2 Quellen (IH1, IH11); Viehtritt: 7 Quellen (IH2, IH5a, IH5b; IH6, IH7, IH9, IH10); Verrohrung: 1 Quelle (IH4); unverbaute Uferquelle (unmittelbar an der Eider): 1 Quelle (IH8).

Alle beeinträchtigten Quellen befinden sich im Offenland und weisen mit Ausnahme der als Uferquelle bezeichneten Quelle zusätzliche Beeinträchtigungen in Form von flächigen oder morphologischen Veränderungen der Quellstruktur auf.

Kartierung der Quellen und Bewertung der Quellstruktur

Die Quellen wurden mithilfe des "Erfassungsbogens für Quellen in Schleswig-Holstein" (QEB_SH 2011) erfasst, der an den Erfassungsbogen Bayerns angelehnt ist (Hotzy & Römheld 2008). Neben allgemeinen Informationen zum Naturraum, Gewässersystem, GPS-Koordinaten usw. wurden Daten zur Quellstruktur und zum Quellzustand aufgenommen. Bei vorliegenden morphologischen und/oder flächigen Beeinträchtigungen wurde der Anteil der betroffenen Fläche bzw. des betroffenen Abflusses geschätzt und daraus der Grad der Beeinträchtigung abgeleitet (gering: 1-10 % der Fläche/des Abflusses betroffen; mittel: 11-50 % betroffen; stark: > 50% betroffen). Des Weiteren wurde das Quellumfeld im Radius von 10 m und 50 m dokumentiert.

Außerdem wurden physikochemische Parameter des Quellwassers analysiert, auf die hier aus Platzgründen nicht eingegangen werden kann.

Die Bewertung der Quellstruktur erfolgte nach dem für Bayern entwickelten Verfahren nach Hotzy & Römheld (2008). Zunächst werden dazu das Teilsystem Quelle und das Teilsystem Umfeld getrennt voneinander bewertet. Der Quellgesamtzustand ergibt sich aus der gewichteten Kombination beider Teilsysteme und wird in fünf Zustandsklassen unterteilt (1: sehr guter Zustand – 5: schlechter Zustand).

Untersuchungen zur Fauna

Zur faunistischen Charakterisierung wurden die Quellbereiche jeweils mit einem Kescher (Maschenweite: 250 µm) halbquantitativ beprobt, indem die Substrate anteilig nach ihrer Gesamtzusammensetzung für etwa 15 Minuten untersucht wurden. Die lebenden Tiere wurden im Labor aussortiert und in 70 %igem Alkohol fixiert. Die Bestimmung der Tiere erfolgte möglichst bis auf Artniveau.

Neben der Betrachtung der Gesamtfauna und ihrer Verteilung auf die Probestellen erfolgte eine ökologische Einstufung aller Arten als Krenobionte, Krenophile oder Krenoxene. Dazu wurde Literatur, die die regionale Stenotopie der Arten in Schleswig-Holstein thematisiert, ausgewertet. Die Berechnung der Ökologischen Wertesumme (ÖWS) erfolgte in Anlehnung an das für das Mittelgebirge entwickelte Verfahren nach Fischer (1996), das für (naturnahe) Quellen in Schleswig-Holstein angepasst wurde (Martin & Rückert 2011). Als Bewertungskriterium dient die regionale Stenotopie eines Taxons. Stenotopen Quellorganismen werden hohe Wertezahlen zugeordnet, während Ubiquisten entsprechend niedrigere Zahlen zugewiesen werden. Außerdem erfolgt eine Gewichtung anhand von Abundanzklassen. Die ermittelte ÖWS wird in fünf Werteklassen eingeordnet, die von Werteklasse I (quelltypische Fauna) bis zu Werteklasse V (sehr quellfremde Fauna) reichen.

Ergebnisse

Strukturbewertung

Die Strukturbewertung ergab für die beiden gefassten Quellen eine unbefriedigende Quellstruktur (vgl. Abb.1). Die naturnahe Quelle wurde aufgrund fehlender Beeinträchtigungen und einem güns-

tigen Quellumfeld als sehr gut bewertet. In einem guten Zustand befinden sich die Uferquelle und die verrohrte Quelle, da hier nur eine geringe Fläche beeinträchtigt wird. Hinsichtlich der durch Viehtritt beeinträchtigten Quellen ergibt sich kein klares Bild. Jeweils zwei Quellen wurden als sehr gut bzw. gut bewertet, die übrigen drei Quellen befinden sich in einem mäßigen Zustand.

Die Ergebnisse decken sich nur teilweise mit der formulierten Hypothese einer nach der Art der Degradation zu unterscheidenden Strukturbewertung. Die gefassten Quellen befinden sich in einer schlechteren Zustandsklasse als alle anderen Quellen und lassen sich somit klar von den übrigen Degradationstypen abgrenzen. Innerhalb der Viehtrittquellen ergibt sich jedoch eine größere Spanne hinsichtlich des Quellzustandes. Zwar kann festgehalten werden, dass eine geringere Veränderung der Quellen vorliegt als bei den gefassten Quellen, jedoch ist keine klare Abgrenzung gegenüber der verrohrten Quelle und der Quelle am Eiderufer festzustellen. Ein starker Einflussfaktor, der das heterogene Bild bei den durch Viehtritt beeinträchtigten Quellen vermutlich stark prägt, ist die Besatzdichte der Rinder, die aber nicht ermittelt werden konnte. Erwartungsgemäß befindet sich die aus Vergleichsgründen untersuchte naturnahe Quelle (IH3) in einem sehr guten Zustand.

Fauna

In den beeinträchtigten Quellen konnten inklusive 13 terrestrischer insgesamt 94 Taxa nachgewiesen werden. Von den 81 aquatischen Taxa entfallen etwa 2/3 auf die Köcherfliegen (15), Wassermilben (13), Zweiflügler (12) und Käfer (14). Mit jeweils 6 Taxa sind die Steinfliegen, Schnecken und Strudelwürmer vertreten.

Die Taxazahlen der elf degradierten Quellen liegen zwischen 7 und 31 aquatischen Taxa, auf die sich die insgesamt 4.924 Individuen verteilen. Die geringste Gesamtindividuenzahl wurde an den beiden gefassten Quellen festgestellt (80 bzw. 12 Individuen). Innerhalb der durch Viehtritt gestörten Quellen wurden Gesamt-Individuenzahlen zwischen 387 und 1058 Individuen ermittelt.

Es konnten 59 der 81 aquatischen Taxa bis auf Artniveau bestimmt werden. Diese Arten wurden hinsichtlich ihrer regionalen Quellbindung eingestuft. 10 Arten (17 %) wurden als krenobiont, 14 Arten (24 %) als krenophil und 35 Arten (59 %) als krenoxen eingestuft. Unter den Krenobionten und Krenophilen sind die Wassermilben (4 bzw. 5 Arten) und Köcherfliegen (3 bzw. 3 Arten) am häufigsten vertreten.

Ordnet man alle Quellen ohne Berücksichtigung ihres Degradationstyps nach dem Strukturzustand, so ist zunächst eine verringerte Artenzahl mit zunehmender Verschlechterung des Quellzustandes zu beobachten (Abb. 1a). Zwar wurde die höchste Anzahl krenobionter Arten in einer Quelle gefunden, die sich in einem sehr guten Zustand befindet, jedoch ist keine kontinuierliche Abnahme der Zahl krenobionter Arten mit abnehmender Strukturgüte zu erkennen. So wurden an Quelle IH11 mindestens genauso viele Krenobionte nachgewiesen wie an Quellen, deren Zustand als gut bewertet wurde. Weiterhin fällt auch hier erneut die Uferquelle (IH8) auf, die trotz ihres guten Zustandes keine quellpräferenten Arten, also weder krenobionte noch krenophile Arten, beherbergt. Dafür ist jedoch eine stark verschlechterte Wasserqualität als Ursache wahrscheinlich. Auch bei der Betrachtung der Quellen innerhalb eines Degradationstyps ist kein klarer Zusammenhang zwischen der Quellstruktur und der Quellfauna festzustellen.

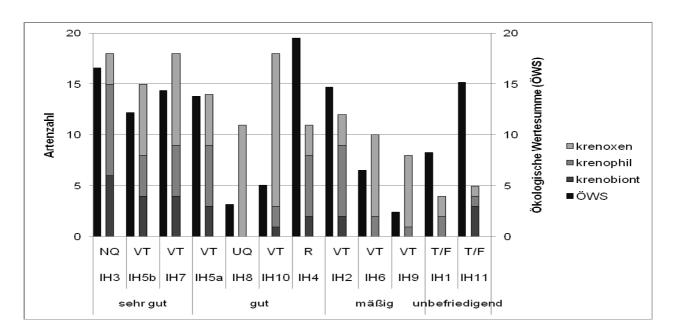
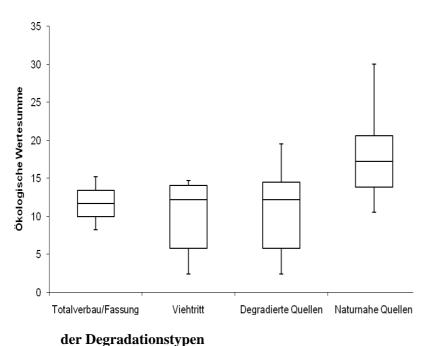



Abb. 1: Zahl der krenobionten, krenophilen und krenoxenen Arten in den untersuchten Quellen verschiedener Degradationstypen (a) und deren Ökologische Wertesumme (b) (NQ = Naturnahe Quelle, VT = Viehtritt, UQ = Uferquelle, R = Verrohrung, T/F = Totalverbau/Fassung)

Zieht man die Ökologische Wertesumme als Kriterium für den Vergleich von Quellstruktur und Quellfauna heran, zeigt sich zunächst, dass keine Quelle eine quelltypische Fauna (Werteklasse I) beherbergt (Abb. 1b). Die Fauna dreier Quellen ist als bedingt quelltypisch zu charakterisieren, während die Uferquelle (IH8) und eine durch Viehtritt geschädigte Quelle (IH9) eine sehr quellfremde Fauna aufweisen. Insgesamt ist keine Abnahme der Ökologischen Wertesumme mit zunehmender Verschlechterung der Quellstruktur festzustellen, wie es hier in erster Annäherung angenommen wurde. Zwar liegt die ÖWS der durch Viehtritt beeinträchtigten Quellen mäßigen Zustandes etwas niedriger als die der Quellen in einem sehr guten Zustand, dennoch ist auch innerhalb der Degradationstypen keine klare Tendenz zu erkennen. Auffällig ist außerdem, dass die gefasste Quelle IH11, deren Struktur als unbefriedigend zu bewerten ist, innerhalb aller beeinträchtigten Quellen die zweithöchste ÖWS erreicht.

Beim Vergleich der ÖWS aller degradierten Quellen und den Degradationstypen "Viehtritt" und "Fassung" mit der ÖWS der naturnahen Waldquellen zeigt sich, dass der Median der naturnahen Quellen (16,5, Werteklasse II) deutlich über denen der drei Degradationskategorien (ca. 12, Werteklasse III) liegt (Abb. 2). Auffällig sind die teils hohen Abweichungen zwischen Minimal- und Maximalwert, die sich aus den enormen Unterschieden der ÖWS der Einzelquellen ergeben.

Abb. 2: Ökologische Wertesumme

Zusammenfassung/Schlussfolgerungen

Im Rahmen dieser Arbeit fand erstmals eine gezielte Untersuchung und Bewertung der Struktur, Fauna und physikalisch-chemischer Parameter von degradierten Quellen in Schleswig-Holstein statt.

Hinsichtlich der eingangs formulierten Hypothesen ist festzuhalten, dass (I) die Strukturbewertung zum Teil klare Unterschiede zwischen Degradationstypen ergab. Allerdings sind einige der degradierten Quellen strukturell als sehr gut oder gut bewertet worden. Durch das teils überraschende Vorkommen quellpräferenter Tiere auch in den degradierten Quellen ist der Unterschied zur Besiedlung naturnaher Waldquellen zumindest in mäßig degradierten Quellen nicht so deutlich wie erwartet (III). Es gibt keinen klaren Zusammenhang zwischen dem Zustand der Quellstruktur und der faunistischen Besiedelung der Quelle (II). Eine schlechte Quellstruktur führt nicht zwingend zu einer wenig quelltypischen Artenzusammensetzung. Die Quellfauna zeigte sich deutlich vielschichtiger als erwartet. Die untersuchten Quellen sind trotz ihrer verschiedenartigen Beeinträchtigungen noch von anspruchsvollen, quellpräferenten Arten besiedelt, die möglicherweise Relikte der ursprünglichen Besiedlung darstellen. Außerdem fehlen einzelne anspruchsvolle Arten, die in Waldquellen häufig waren. Auch ist - verglichen mit der Fauna naturnaher Waldquellen im selben Naturraum – eine größere Zahl krenoxener Arten nachgewiesen worden. Es ist somit zu erwarten, dass eine Verbesserung der Strukturen relativ schnell zu einer Erholung der Fauna führen kann, da teils noch anspruchsvollere Arten vorhanden sind. Es sollten unbedingt Maßnahmen zur Verbesserung der hier untersuchten, aber auch in ähnlicher Weise gestörter Quellstandorte ergriffen werden, um die quellgebundenen Arten dieser Quellen dort erhalten zu können und auf lange Sicht eine Entwicklung zu einer quelltypischeren Fauna ermöglichen zu können. Die Strukturbewertung kann somit zur Ableitung von Maßnahmen unmittelbar herangezogen werden, exemplarisch sollte jedoch auch die für die ökologische Bewertung maßgebliche Fauna erfasst werden. Da entsprechende Daten kaum existieren und um das erwiesene Potenzial der Fauna für Erfolgskontrollen zu nutzen, ist es gleichfalls wichtig, die Veränderungen der Zusammensetzung der Fauna vor und zu unterschiedlichen Zeitpunkten der Maßnahmenumsetzung zu untersuchen.

Literatur

Fischer, J. (1996): Bewertungsverfahren zur Quellfauna in: Crunoecia 5, S. 227-240

Hohmann, I. (2014): Untersuchungen zur Besiedlung anthropogen beeinträchtigter Quellen in Schleswig-Holstein. Masterarbeit Universität Kiel

Hotzy & Römheld (2008): Aktionsprogramm Quellen in Bayern – 2. Teil: Quellerfassung und –bewertung. Augsburg (Aktionsprogramm Quellen in Bayern, 2)

Martin (2012): Die Diversität der Quellfauna Schleswig-Holsteins – ein erster Überblick in: Deutsche Gesellschaft für Limnologie (DGL), Erweiterte Zusammenfassung der Jahrestagung 2011 Weihenstephan

Martin & Brunke (2012): Faunal typology of lowland springs in northern Germany in: Freshwater Science 31 (2), S. 542-562

Martin & Rückert (2011): Die Quellfauna Schleswig-Holsteins und ihre regionale Stenotopie in: Faun.-Ökol.Mitt. 9 (5-6), S. 171-224

Quellerfassungsbogen für Schleswig-Holstein (QEB SH) (2011): Erfassungsbogen und Erläuterungen (Stand 14.07.2011). Eigenverlag. Kiel. 2+6 S.

Deutsche Gesellschaft für Limnologie (DGL) Erweiterte Zusammenfassungen der Jahrestagung 2013 (Potsdam-Berlin), Hardegsen 2014

Kalktuffquellen: Ein FFH-Lebensraum ohne Charakterarten in der Limnofauna?

Peter Martin & Lisa Wischniowsky (†)

Christian-Albrechts-Universität zu Kiel, Zoologisches Institut, Abteilung Limnologie, Olshausenstr. 40, D-24098 Kiel, pmartin@zoologie.uni-kiel.de

Keywords: Quellen, Tiefland, Wasserchemie, Invertebratenfauna, Zeigerarten, Naturschutz

Einleitung

Quellen spielen im Naturschutz leider nur eine sehr untergeordnete Rolle. Obwohl sie als Biotope laut Bundes- und Landesgesetzen geschützt sind, wurden sie früher und teils auch heute noch aus Unachtsamkeit gefasst, beweidet oder durch Drainage ganz aus der Landschaft entfernt. Auch in der Europäischen Wasserrahmenrichtlinie finden sie bundesweit keine Berücksichtigung. Auch nicht in Schleswig-Holstein, wo bereits einige konzeptionelle Vorarbeiten erfolgten (Regionale Quellbindung und Bewertung: Martin & Rückert 2011, faunistisch begründete Quelltypologie: Martin & Brunke 2012). Dies ist bedauerlich, da gerade in diesem Bundesland die zahlreichen historischen Arbeiten ein beeindruckendes Bild über die bisher bekannten Quellen insgesamt als "Hotspot" der Biodiversität ergaben, auch wenn Einzelquellen oft nur wenig divers besiedelt sind (Martin 2012).

Ein besonderer Quelltyp ist jedoch als prioritärer Lebensraumtyp im Anhang I der FFH-Richtlinie aufgeführt, die Kalktuffquellen (Cratoneurion; FFH Code * 7220, als Untertyp der Kalkreichen Niedermoore; BfN 2013). Definiert sind solche Quellen als "Sicker-, Sturz- oder Tümpelquellen mit kalkhaltigem Wasser und Ausfällungen von Kalksinter (Kalktuff) in unmittelbarer Umgebung des Quellwasseraustritts im Wald oder im Freiland. Häufig sind kalkverkrustete Moosüberzüge des Cratoneurion. Eingeschlossen sind auch Quellbäche, soweit Kalktuffbildungen vorliegen." (BfN 2013) In den Kartierungshinweisen wird angegeben, dass die Zuordnung eines Vorkommens zu diesem Lebensraumtyp bei erkennbarer Kalktuff-Bildung erfolgt. "Die Abgrenzung umfasst dabei alle direkt zur Quelle gehörenden Bereiche sowie die von der entsprechenden Vegetation (Cratoneurion) eingenommene Fläche, auch wenn diese sich am Quellbach bis in den Oberlauf des Fließgewässers entlangzieht." (BfN 2013) Nach diesem Kriterium wird somit teils der Quellbach mit in die Betrachtung einbezogen, geht also über den unmittelbaren Quellbereich aus Eu- und Hypokrenal hinaus.

Über die faunistische Besiedlung von Quellen im engeren Sinne, die als Kalktuffquellen zu klassifizieren sind, weiß man nur wenig. So gibt es z.B. aus dem Schweizer Jura und Mittelland Hinweise darauf, dass die Fauna der Kalktuffquellen dort verarmt ist (Zollhöfer 1997). Der Grund liegt vermutlich darin, dass nur einige Bewohner physiologisch die Belastung durch Kalkablagerungen zu tolerieren vermögen (vgl. Dürrenfeldt 1978).

In der hier vorgestellten Untersuchung, die im Rahmen einer Bachelorarbeit erfolgte (Wischniowsky 2012), wurden in erster Linie die faunistischen Befunde aus Kalktuffquellen (KTQ) mit sol-

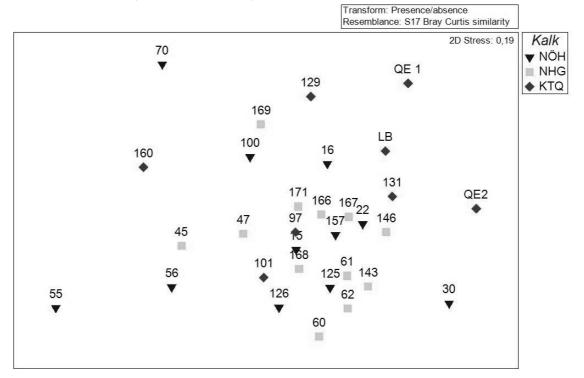
chen aus Nichtkalktuffquellen (NKTQ) verglichen. Konkret wurden zwei Hauptfragestellungen bearbeitet: a) Unterscheidet sich die Fauna von KTQ und NKTQ in Schleswig-Holstein? Gibt es Charakterarten für die Kalktuffquellen? b) Könnte man die Fauna ggf. in die Beschreibung des Lebensraumtyps "Kalktuffquelle" mit einbeziehen?

Material und Methoden

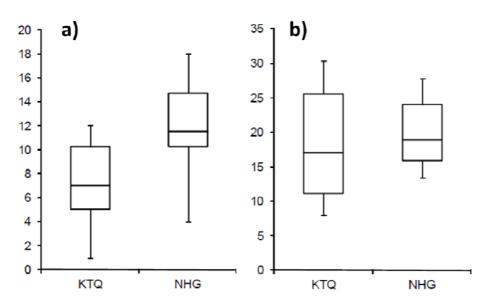
Neben der gezielten Untersuchung von drei Kalktuffquellen (QE1, QE2, LB1) wurden Altdaten eines vorangegangenen Projektes in die Auswertung mit einbezogen (fortlaufend nummerierte Standorte; Martin & Rückert 2011, Martin & Brunke 2012). Alle waren Waldquellen.

Neben Quellen aus dem jungglazialen Naturraum Östliches Hügelland (KTQ aus dem Östlichen Hügelland: Abiotik n=12, Fauna n=8, NKTQ aus dem Östlichen Hügelland (=NÖH): Abiotik n=29, Fauna n=10) wurden noch NKTQ aus der Hohen Geest (=NHG) betrachtet (Abiotik n=26, Fauna n=10). Insgesamt wurden bezüglich der Abiotik 70 und hinsichtlich der Fauna 31 Quellen ausgewertet. Bei den KTQ handelte es sich nur ausnahmsweise um als FFH-Gebiet ausgewiesene Kalktuffquellen. Alleine Kalkablagerungen im Eukrenal wurden als Kriterium der Auswahl benutzt. Um zu vermeiden, dass Unterschiede in der Besiedlung durch verschiedene Quelltypen überlagert sein könnten, wurden nur Rheokrenen und Rheohelokrenen betrachtet. Für Details der Methodik siehe Wischniowsky (2012). Die multivariaten Analysen erfolgten mit Primer 6 (Primer-E Ltd., Plymouth, England).

Ergebnisse und Diskussion


Eine Hauptkomponentenanalyse (PCA) der <u>physikochemischen Parameter</u> ergab, dass die Wasserhärte bzw. die Leitfähigkeit sowie mit Einschränkung die pH-Werte die wichtigsten trennenden Faktoren darstellen. Sowohl die KTQ als auch die NÖH aus dem Jungglazial können sensu Schönborn (2003) als Karbonatquellen eingestuft werden, die NHG stehen zwischen Karbonat- und Silikatquellen. Die nur im Östlichen Hügelland festgestellten KTQ sind also von den NÖH desselben Naturraums nicht zu unterscheiden, wohl aber mit statistischer Signifikanz von den NHG.

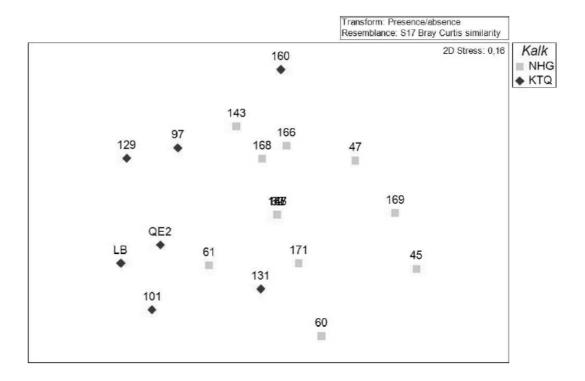
In der Fauna ergab die Auswertung mittels einer multidimensionaler Skalierung (nMDS) auf Basis von Presence/absence (Abb. 1) weder eine klare Auftrennung der KTQ aus dem Östlichen Hügelland mit den NÖH noch mit den NHG. In den andersartig transformierten Abundanzen war die Auflösung mittels MDS noch schlechter. Nur einzelne der KTQ unterscheiden sich von den Quellen der übrigen Kategorien (z.B. QE 1, 2). Eine ANOSIM-Analyse ergab keine signifikante Auftrennung der drei Gruppen, auch dann nicht, wenn man nur die Quellen aus dem Hügelland vergleicht.


Die KTQ und die NÖH unterschieden sich nicht signifikant voneinander, weder in den Individuenzahlen, Artenzahlen, den Anteilen der regionalen Quellspezialisten (krenobionte und krenophile Arten) noch in den Ökologischen Wertesummen (ÖWS, einem Maß für die Standorttypie der Quellbesiedlung; vgl. Fischer 1996, Martin & Rückert 2011). Entsprechend konnten auch keine Charakterarten für die KTQ ermittelt werden.

Aufgrund der mangelhaften Unterscheidungsmöglichkeit der Fauna der beiden Quellkategorien im Östlichen Hügelland wurden die KTQ des Hügellandes mit Nicht-Kalktuffquellen der Hohen Geest (NHG) verglichen, die sozusagen einen extremeren Typus von Nicht-Kalktuffquellen darstellen. Bei diesem Vergleich wurden deutliche Unterschiede offenbar. Sowohl die Gesamtindividuenzah-

len als auch die Gesamttaxazahlen lagen bei den KTQ (Mittelwert 110 Ind., 16 Taxa) signifikant unter denen in den NHG (210 Ind., 24 Taxa).

Abb. 1: MDS des Vorkommens bzw. der Abwesenheit der gesamten Taxa in den betrachteten Quellen. KTQ=Kalktuffquellen im Östlichen Hügelland, NÖH=Nicht-Kalktuffquellen im Östlichen Hügelland, NHG=Nicht-Kalktuffquellen in der Hohen Geest. n = 31.


Abb. 2: Boxplots zum Vergleich der Anzahlen von Kalktuffquellen im Östlichen Hügelland (KTQ, n=8) und Nicht-Kalktuffquellen in der Hohen Geest (NHG, n=10). a) Anzahlen krenobionter und krenophiler Arten, b) Ökologische Wertesummen (ÖWS). Kategorien der ÖWS: >20 = quelltypisch, 15,0-19,9 = bedingt quelltypisch, 10,0-14,9 = quellverträglich, 5,0-9,9 quellfremd, <5,0 = sehr quellfremd.

In ähnlicher Weise unterscheiden sich die Anzahlen der Quellspezialisten voneinander. In den KTQ waren sowohl die Anzahlen krenobionter Arten (Mittelwert 3,4 Arten) als auch die Anzahl der krenobionten und krenophilen Arten (7,3, vgl. Abb. 2a) signifikant geringer als in den NHG (5,9

bzw. 12 Arten). Betrachtet man allerdings die prozentualen Anteile der beiden Gruppen an den Gesamttaxazahl liegen Kalk- und Nichtkalktuffquellen auf einem ähnlichen Niveau.

Beim Großteil der Quellen ergab die Auswertung der ÖWS einen Hinweis auf die Naturnähe der Besiedlung (vgl. Abb. 2b). Es zeigt sich, dass sowohl bei den KTQ als auch bei den NHG die Ökologischen Wertesummen auf einer ähnlichen, allerdings weit streuenden Höhe lagen. Dabei liegen die Mittelwerte (ÖWS von 18 bzw. 20) bzw. Mediane auf einem ähnlichen Niveau, die Schwankungen bei den Kalktuffquellen sind aber sowohl in Richtung einer quelltypischen als auch in Richtung einer quellfremden Besiedlung ausgeprägter als bei den Nicht-Kalktuffquellen.

In der teils unveröffentlichten Literatur gibt es Hinweise auf mögliche Charakterarten der Kalktuffquellen, z.B. unter den Plathelminthes (Dürrenfeldt 1978, Richter 2008), Crustacea (Richter 2008), Mollusca (Dürrenfeldt 1978, Gerber 2006, Richter 2008, Hager 2011) oder Coleoptera (Zollhöfer 1997). Daher wurden diese Gruppen im Vergleich zwischen den KTQ und den NHG gesondert betrachtet. Es konnten keine in den KTQ exklusiv vorkommenden Arten ermittelt werden. Im Gegenteil, in den KTQ fehlten auffälligerweise einige Limnephiliden-Arten unter den Köcherfliegen und ein Großteil der Käfer. Bei den Käfern zeigte sich in einer MDS zwischen KTQ und NHG eine recht gute Trennung beider Gruppen (Abb. 3), die zumindest eine leichte Signifikanz auch in der ANOSIM-Analyse zeigte (global R=0,401, p=0,02). Die SIMPER-Analyse zeigt, dass drei in den KTQ seltenere Arten jeweils etwa zu 15% die Unähnlichkeiten zu den NHG erklären, nämlich Anacaena globulus, Odeles marginata und Agabus guttatus.

Abb. 3: MDS auf Basis des Vorkommens der Coleoptera-Arten. KTQ=Kalktuffquellen im Östlichen Hügelland, NHG=Nicht-Kalktuffquellen in der Hohen Geest. n = 18.

Zusammenfassung und Schlussfolgerungen

Kalktuffquellen gehören zu den prioritären FFH-Lebensraumtypen der Natura 2000 Richtlinie, werden jedoch bisher ausschließlich vegetationskundlich und hydrogeochemisch definiert. Besiedlungsunterschiede zwischen den KTQ und NKTQ des Östlichen Hügellandes Schleswig-Holsteins

deuteten in unserer Untersuchung zwar an, waren aber nicht statistisch signifikant. Dies könnte dadurch bedingt sein, dass die glazial geprägten Gemeinsamkeiten die durch andere Faktoren verursachten Unterschiede überlagern (vgl. Martin & Brunke 2012).

Deutliche Unterschiede sowohl der abiotischen Faktoren als auch der Fauna zeigten sich jedoch zwischen den KTQ im Östlichen Hügelland sowie den NKTQ der Hohen Geest. In der Fauna waren die KTQ durch verringerte Abundanzen und absolute Taxazahlen geprägt, aber auch durch weniger quellpräferente (krenobionte und krenophile) Arten. Einige Taxa fehlten in den KTQ in auffälliger Weise, für Käfer wurde dies bereits von Zollhöfer (1996) festgestellt. Kalktuffquellen stellen somit in gewisser Weise ein Extremhabitat für die Limnofauna dar. Für Schleswig-Holstein kann somit in erster Annäherung behauptet werden, dass mit KTQ als FFH-Lebensraumtyp eher weniger wertvolle Quellen geschützt werden, was einen Widerspruch zur Schutzidee darstellt. Das Vorkommen von Quellspezialisten auch in den KTQ ermöglicht es jedoch, diese als Charakterarten gleichfalls für diesen Lebensraumtyp vorzuschlagen.

Unter den Waldquellen beider Kategorien konnte jedoch mittels Ökologischer Wertesumme in beiden Fällen eine mehrheitlich quelltypische bzw. bedingt quelltypische Besiedlung festgestellt werden. Dies bedeutet, dass eine faunistisch begründete Bewertung des Lebensraumtyps KTQ offenkundig möglich ist, so dass durch die tierische Besiedlung eine Bewertung des FFH-Lebensraums machbar erscheint.

Die bisher biologisch ausschließlich floristische Betrachtung der KTQ greift offenbar zu kurz. Es ist beabsichtigt, als FFH-Gebiete ausgewiesene KTQ des Offenlandes ebenfalls limnofaunistisch zu untersuchen und ökologisch zu bewerten, um dort ggf. einen Handlungsbedarf (z.B. Auszäunung, Verringerung der Besatzstärke etc.) aufzuzeigen.

Literatur

- Bundesamt für Naturschutz (BfN) (2013): *Kalktuff-Quellen (Cratoneurion). URL: http://www.bfn.de/0316_typ7220.html (besucht am 13.12.2013).
- Dürrenfeldt, A. (1978): Untersuchungen zur Besiedlungsbiologie von Kalktuff faunistische, ökologische und elektronenmikroskopische Befunde. Arch. Hydrobiol./Suppl. 54 (1), 1–79.
- Fischer, J. (1996): Bewertungsverfahren zur Quellfauna. Crunoecia 5, 227–240.
- Gerber, J. (2006): Weichtiere (Mollusca). In: R. Gerecke und H. Franz (Hg.): Quellen im Nationalpark Berchtesgaden. Lebensgemeinschaften als Indikatoren des Klimawandels. Nationalpark Berchtesgaden Forschungsbericht 51, 115–119.
- Hager, I. (2011): Faunistische Untersuchung von Quellbiotopen der Hangleitenwälder der Alz. im Zusammenhang mit dem Projekt "Quellenstandorte im mittleren Alztal; Kartierung, Bewertung, Entwicklungskonzepte" des Landschaftspflegeverbandes Altötting. Ergebnisbericht, 10pp.
- Martin, P. (2012): Die Diversität der Quellfauna Schleswig-Holsteins ein erster Überblick. Deutsche Gesellschaft für Limnologie (DGL) Erweiterte Zusammenfassung der Jahrestagung 2011 (Weihenstephan), Hardegsen 2012, 211–215.
- Martin, P.; Rückert, M. (2011): Die Quellfauna Schleswig-Holsteins und ihre regionale Stenotopie. Faun.-Ökol. Mitt. 9 (5-6), 171–224.
- Martin, P.; Brunke, M. (2012): Faunal typology of lowland springs in northern Germany. Freshwater Science 31 (2), 542–562.
- Richter, R. V. (2008): Untersuchungen zur Ökologie an naturschutzfachlich optimierten Kalktuffquellen in der mittleren und südlichen Frankenalb. Diplomarbeit, Fachhochschule Weihenstephan, Abteilung Triesdorf, 108pp. + Anhang.
- Schönborn, W. (2003): Lehrbuch der Limnologie. Stuttgart: E. Schweizerbart'sche Verlagsbuchhandlung, 588pp.
- Wischniowsky, L. (2012): Kalktuffquellen in Schleswig-Holstein Versuch einer faunistischen Charakterisierung. Bachelorarbeit Universität Kiel, 50pp. + Anhang.
- Zollhöfer, J.M (1997): Quellen die unbekannten Biotope im Schweizer Jura und Mittelland: erfassen, bewerten, schützen. Bristol-Schriftenreihe Band 6, Bristol-Stiftung, Ruth und Herbert Uhl-Forschungsstelle für Natur- und Umweltschutz, 153pp.

Deutsche Gesellschaft für Limnologie (DGL) Erweiterte Zusammenfassungen der Jahrestagung 2013 (Potsdam-Berlin), Hardegsen 2014

Mind the summit trap? Kaltstenotherme Arten und die Folgen des Klimawandels im Mittelgebirge

Martin Reiss

Philipps-Universität Marburg, Fachbereich Geographie, Deutschhausstr. 10, 35032 Marburg

Keywords: Quellen, Eukrenal, Wassertemperatur, Rhön, Gefährdungssituation

Einleitung

Quellgewässer sind Refugien für kaltstenotherme Arten. Dafür sorgen meist konstant kalte Wassertemperaturen, die bei ständig schüttenden, normal kalten Quellen (Akratopegene) mit geringer Amplitude um den Jahresmittelwert der regionalen Lufttemperatur am Ort liegen. Das Krenal beherbergt entsprechend spezialisierte, seltene Arten der Wirbellosenfauna mit enger Habitatbindung an Quellgewässer. Als Grenzlebensraum (Ökoton) zwischen Grundwasser und Oberflächengewässer sind ungestörte Quellen artenreiche Inselbiotope. Die deutschen Mittelgebirge erreichen selten Höhen über 1.000 Meter, so dass eine höhenabhängige Verbreitung kältetoleranter Arten auf die höher gelegenen montanen Regionen kumuliert. Zumal die Landnutzung der tieferen montanen Regionen durch intensive menschliche Nutzung geprägt ist. Im Kontrast zu den Hochgebirgen haben kaltstenotherme Arten vor allem in kühleren Regionen nur beschränkte vertikale Ausweichmöglichkeiten, sollte ihr rezenter Lebensraum unter wärmeren Klimabedingungen ungeeignet werden. Diese Situation wird als summit trap bezeichnet. Aktuell wissen wir zur Verbreitung solcher Arten im Mittelgebirge sehr wenig, d.h. es fehlen meist aktuelle empirische Studien zur flächenhaften Biogeographie kaltstenothermer Arten in Deutschland und Europa. Diese Daten werden jedoch zur Prognose zu den Folgen des Klimawandels benötigt. Deshalb wurde eine bestehende Datenerhebung zur Quellenkartierung in der Rhön ausgewertet, um eine erste aktuelle Höhenverteilung kaltstenothermer Arten sowie eine regionale Gefährdungsanalyse zu kennzeichnen. Die vorgestellten Ergebnisse sind nicht das Resultat einer abgeschlossenen Forschungsarbeit, sondern sind als Werkstattbericht zu verstehen.

Material und Methoden

Untersuchungsgebiet

Das Untersuchungsgebiet umfasst den Naturraum Rhön, wobei ein Schwerpunkt der Forschungsarbeiten im Biosphärenreservat der Rhön in den Bundesländern Bayern, Hessen und Thüringen erfolgte (Reiss & Zaenker 2008, Reiss & Zaenker 2009). Erste Untersuchungen begannen im Jahr 1996. Eine systematische faunistisch-ökologische Erfassung erfolgt in Kooperation mit den Verwaltungsstellen und dem Landesverband für Höhlen- und Karstforschung Hessen e.V. seit 2005. Aktuell (Stand: Anfang September 2013) sind 2.051 Quellbiotope (Eukrenal) dokumentiert. Eine Verteilung auf die Bundesländer sieht wie folgt aus: Hessen: 1.247 (60.8%), Bayern: 460 (22.4%) und Thüringen: 344 (16.8%). Naturräumlich liegt die Verteilung der untersuchten Quellen folgendermaßen vor: Hohe Rhön 1.231 (60 %), Vorder- und Kuppenrhön 779 (38 %) und Südrhön 41 (2 %).

Aufgrund der für Europa einmaligen quantitativen Datenlage zum erfassten Faunavorkommen von Quellgewässern wurde dieser Datensatz für eine erste Analyse herangezogen.

Methoden und Fragestellung

Die Erfassungs- und Datenhaltungsmethoden sind in Reiss et al. (2009) dokumentiert. Für die Auswertung bzw. Aufbereitung der Daten wurden einfache statistische Methoden angewandt. Höhenstufen wurden entsprechend in 100-Höhenmeter-Schritten klassifiziert, um eine Verteilung kaltstenothermer Arten zu kategorisieren. Abiotische und biotische Verteilungsmuster kardinalskalierten Daten wurden mit Hilfe von Box-Whisker-Plots analysiert, um entsprechend Minimum-, Maximum- und Medianwerte sowie 25%- und 75%-Quartile zu ermitteln und darzustellen. Bivariate Zusammenhänge bzw. Trendanalysen wurden mit Regressionsgleichungen nach Pearson ermittelt. Die räumlich-grafische Fortschreibung der Trendanalysen zur zukünftigen Verteilung kaltstenothermer Arten wurde mit DIVA-GIS (http://www.diva-gis.org) als Kartenplots vorgenommen. Dabei wurden empirische Werte des Quellwassertemperaturmonitorings vom Hessischen Landesamt für Umwelt und Geologie (HLUG) zu Grunde gelegt (von Pape 2009). Im Messstellennetz des HLUG wurden Messpunkte der Rhön herangezogen. Diese zeigen eine jährliche Temperaturzunahme von durchschnittlich 0.03 bis 0.04 Grad Celsius. In den Trendanalysen wurde jeweils eine lineare Zunahme von 0.03 Grad Celsius für die Zeiträume bis 2050 und bis 2080 angenommen. Der statistisch hoch signifikante Trend wird auch in der Anwendung des WETTREG-Models projiziert (BGS Umwelt 2010).

Die Fragestellung leitet sich vor allem aus den bisherigen Trendanalysen des Quellwassertemperaturmonitoring ab, da hier aus langjährigen Zeitreihen Temperaturerhöhungen zu verzeichnen sind:

- 1. Wie ist der aktueller Stand der höhenabhängigen (altitudinalen) Verbreitung kaltstenothermer Arten (Wirbellose) in Quellgewässer der Rhön? (<u>Status quo-Analyse</u>).
- 2. Welcher "Gefährdungsstatus" ergibt sich daraus zur Einschätzung von Entwicklungen unter den zu erwartenden Veränderungen des Klimas? (Regionale Gefährdungsanalyse).
- 3. Wie ist die höhenabhängige Verbreitung kaltstenothermer Arten vorrausschauend einzuschätzen? (Zukünftige Prognose).

Ergebnisse und Diskussion

Zunächst wurde ermittelt, ob es überhaupt einen statistischen Zusammenhang zwischen der Zunahme der Meereshöhe (Altitude) und der (Abnahme der) Quellwassertemperatur im Untersuchungsgebiet gibt. Ein solcher "Höhengradient" konnte nachgewiesen werden (Abb. 1).

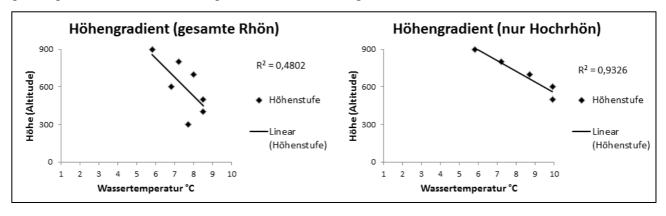


Abb. 1: Höhengradienten in der Rhön (Zusammenhang zwischen Anstieg der Höhenlage und Abnahme der Quellwassertemperatur).

Der Datensatz, bezogen auf den Naturraum Hochrhön, repräsentiert 60 % des gesamten Datensatzes und wurde aufgrund der hohen Signifikanz des statistischen Zusammenhangs zur weiteren Auswertung verwendet.

Für eine erste Übersicht wurden als Vertreter kaltstenotherme Arten folgende Spezies ausgewählt und analysiert: *Bythinella compressa* (Rhön-Quellschnecke), *Crenobia alpina* (Alpen-Strudelwurm), *Crunoecia irrorata* (Quell-Köcherfliege) und *Niphargus schellenbergi* (Schellenberg-Grundwasserflohkrebs).

Zunächst wurde pro Art deren Verteilung nach der mittleren Quellwassertemperatur ausgewertet, die nochmals bestätigt, dass die ausgewählten kaltstenothermen Arten eine sehr enge Bindung (geringe Amplituden der 25%- und 75%-Quartile) und konstant kalte Wassertemperaturen aufzeigen: *Bythinella compressa* (Median: 7.5°C), *Crenobia alpina* (Median: 7.4°C), *Crunoecia irrorata* (Median: 7.7°C) und *Niphargus schellenbergi* (6.9°C). Insgesamt zeigen alle Rhönquellen eine normal kalte mittlere Quellwassertemperatur mit geringen Amplituden um einen Median von 7.6°C.

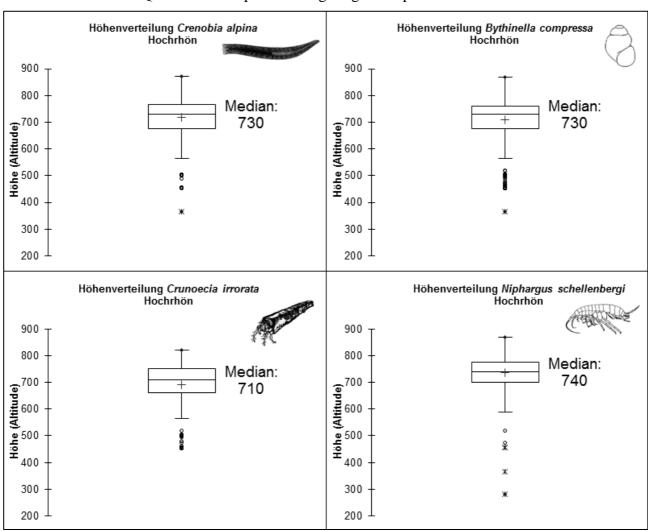


Abb. 2: Höhenverteilung ausgewählter kaltstenothermer Arten in der Hochrhön.

Die aktuelle Höhenverteilung der ausgewählten kaltstenothermen Arten in der Hochrhön (Abb. 2) zeigt eine Akkumulation in bereits gipfelnahen Höhenlagen, zumal davon auszugehen ist, dass die höchstgelegensten Quellen in der Rhön unterhalb von 900 bis 850 m ü NHN entspringen (Wasserkuppe als höchster Berg ist 950 m ü NHN). Eine Analyse der relativen Höhenverteilung der Arten nach 100m-Höhenstufung ergab, dass eine Häufung zwischen 700 und 800 m ü NHN festzustellen ist. Die Status-quo-Analyse (**Frage 1**) kann demnach soweit beantwortet werden: **Kaltstenotherme**

Arten sind bereits heute in den oberen Höhenstufen häufiger vorzufinden als in niedrigeren Höhenlagen.

Da in den unteren Höhenstufen zudem Stressoren aus einer intensiveren Landnutzung zu berücksichtigen sind, d.h. Quellgewässer hier häufiger strukturelle und stoffhaushaltliche Defizite aufweisen (Verbau, Eutrophierung durch Landwirtschaft, Versauerung durch Nadelwald) wird Frage 2, nämlich die regionale Gefährdungsanalyse zunächst wie folgt beantwortet: In der Rhön muss von einem hohen regionalen Gefährdungspotenzial kaltstenothermer Arten ausgegangen werden.

Ein erster Ansatz für eine Einschätzung der zukünftigen Entwicklung der Verteilung kaltstenothermer Arten in der Rhön wurde für die Rhön-Quellschnecke Bythinella compressa durchgeführt, vor allem weil für diese endemische Art eine besondere nationale und internationale naturschutzfachliche Verantwortung zu kennzeichnen ist (Reiss et al. 2013). Außerdem liegen für diese Süßwassermolluske entsprechend autökologische Kenntnisse vor. Das Wassertemperaturoptimum der Art liegt zwischen 6 bis 8 Grad Celsius (Glöer 2002) und eine Extinktion ist ab 12 Grad Celsius Wassertemperatur dokumentiert (Jungbluth 1971). Unter den gegebenen Annahmen (vgl. Methoden und Fragestellung) muss von einem erheblichen Rückgang besiedelter Quellgewässer ausgegangen werden, d.h. die Rhön-Quellschnecke könnte im Jahr 2050 in 63.3 % und im Jahr 2080 in 76 % weniger Quellen vorkommen als das heute der Fall ist. Auch wenn eine Beantwortung der Frage 3 nach der zukünftigen höhenabhängige Verbreitung kaltstenothermer Arten mit dieser Voruntersuchung noch nicht abschließend beantwortet werden kann, so ist zumindest festzuhalten: Ein deutlicher Rückgang kaltstenothermer Arten wie der Rhön-Quellschnecke ist durchaus zu erwarten. Diese generelle Trendeinschätzung wird von Berechnungen zur Habitatmodellierung für die EPT-Fauna von Bachoberläufen ähnlich prognostiziert (Sauer et al. 2011). Allerdings ist das Ausmaß eines möglichen Rückgangs der Rhön-Quellschnecke mit sehr großen Unsicherheiten verbunden, zudem sind andere Einflussfaktoren nicht berücksichtigt worden. Allein weitere klimatologische Parameter oder unterschiedliche Klimaszenarien sind zunächst außer Acht gelassen worden. Weitere Stressoren zur Habitatmodellierung sind nicht in die Überlegung eingeflossen, wie z.B. eine sich verändernde Landnutzung oder chemische Veränderungen der Quellgewässergüte durch Nährstoff- und Spurenelemente-Zufuhr sowie veränderte hydrologische Verhältnisse. Trends der Entwicklung zur Quellschüttung liegen bereits vor (BGS Umwelt 2010) bzw. müssten regional aktuell ausgewertet werden. Da sich ein genereller Rückgang der Mittelwerte bezüglich der Abflussmenge ergeben könnte, muss dieser Faktor auch bei der Entwicklung der Quellwassertemperatur berücksichtigt werden. Eine Berücksichtigung der Extremereignisse, die vor allem saisonale Veränderungen erheblich beeinflussen könnten, sollte Beachtung finden, um belastbare Prognosen zu erzielen. Eine entsprechend hohe Sensibilität von Quellgewässerökosystemen voraussetzend ist mit erheblichen Veränderungen der Besiedlung durch kaltstenotherme Arten zu rechnen. Ein erstes Herangehen an die gestellten Forschungsfragen zeigt zumindest den erheblichen Bedarf an Untersuchungen zu Auswirkungen des Klimawandels, letztendlich des globalen Wandels auf Quellgewässer. Neben einer detaillierteren Forschung zur Verbreitungs- und Habitatmodellierung, sollte die Grundlagenforschung zur Verbreitungsbiologie von Quellarten nicht vernachlässigt werden. Ein generelles Defizit besteht vor allem im Mangel an Langzeitstudien, was die Notwendigkeit eines ökologischen Monitorings aufzeigt, der neben abiotischen Erfassungsparametern auch das Artvorkommen dokumentiert.

Zusammenfassung

Eine erste Auswertung eines fortlaufend und unter Mitarbeit des Autors erhobenen Datensatzes zur Arten- und Biotopinventarisierung von Quellgewässern im Naturraum Rhön (insbesondere im Biosphärenreservat Rhön) zur höhenabhängigen Verteilung kaltstenothermer Arten wird vorgenommen und dargestellt. Die Leitfrage ist dabei, die aktuelle Verbreitung von Arten zu kennzeichnen, die in besonderer Weise an konstant kalttemperierte Quellökosysteme gebunden sind, um ein Gefährdungspotenzial einzuschätzen, in wie weit bereits jetzt der Charakter einer "Gipfelfalle" (summit trap) gegeben sein könnte und in Zukunft realistisch erscheint. Die Status-quo-Analyse zeigt ein entsprechend hohes Gefährdungspotenzial, da ausgewählte kaltstenotherme Arten in unmittelbarer Nähe der Gipfellagen kumuliert siedeln. Ein entsprechender Höhengradient der Quellwassertemperaturen ist am Beispiel der Hochrhön nachweisbar, d.h. mit zunehmender Höhenlage nimmt die Quellwassertemperatur ab. Eine erste Prognose einer klimawandelbedingten Temperaturerhöhung des Quellwassers zeigt für die Jahre 2050 und 2080 einen denkbaren Rückgang kaltstenothermer Arten für die Hochrhön. So besteht die Möglichkeit, dass im Jahr 2080 mehr als 3/4tel des heutigen Vorkommens der endemischen Rhön-Quellschnecke Bythinella compressa nicht mehr vorhanden ist. Weiterer Forschungsbedarf ist jedoch notwendig, um diese Hypothesen weiter zu überprüfen und um weitere Untersuchungen zu Auswirkungen des Klimawandels zu analysieren und zu prognostizieren.

Literatur

- BGS Umwelt (2010): BMBF-Fördermaßnahme Forschung für den Klimaschutz und Schutz vor Klimawirkungen Teilaspekt B: Anpassung an Klimatrends und Extremwetter Anpassungsstrategien an Klimatrends und Extremwetter und Maßnahmen für ein nachhaltiges Grundwassermanagement. Abschlussbericht. ("AnKliG-Bericht" siehe < http://www.anklig.de>)
- Glöer, P. (2002): Die Süßwassergastropoden Nord- und Mitteleuropas. ConchBooks: Hackenheim. 327 S. Jungbluth, J. H. (1971): Die systematische Stellung von Bythinella compressa montisavium Haas und Bythinella compressa (Frauenfeld). (Mollusca: Prosobranchia: Hydrobiidae). In: Archiv für Molluskenkunde, Jg. 101, H. 5/6: 215–235
- Reiss, M., Steiner, H. & S. Zaenker (2013): Gefährdungssituation der endemischen Rhön-Quellschnecke (Bythinella compressa), der Begleitfauna und des Lebensraums in Hessen. In: BfN-Skripten 335: 53-57. (= Feit; U. & H. Korn (Hrsg.): Treffpunkt Biologische Vielfalt XII. Interdisziplinärer Forschungsaustausch im Rahmen des Übereinkommens über die biologische Vielfalt. Bonn)
- Reiss, M., Steiner, H. & Zaenker, S. (2009): The Biospeleological Register of the Hesse Federation for Cave and Karst Research (Germany). Cave and Karst Science 35(1): 25-34
- Reiss, M. & Zaenker, S. (2008): Quellen in der Rhön Zustand und Besiedlung besonders schutzwürdiger Lebensräume. In: Jahrbuch Naturschutz in Hessen 12/2008: 27-29
- Reiss, M. & Zaenker, S. (2007): Quellen in der Rhön Faunistisch-ökologische Erfassung im Biosphärenreservat Rhön. In: Beiträge Region und Nachhaltigkeit, Jahrgang 4, Heft 4: 153-163
- Sauer, J., Domisch, S., Nowak, C., Haase, P. (2011): Low mountain ranges summit traps for montane freshwater communities under climate change. Biodiversity and Conservation 20: 3133 3146
- von Pape, W.-P. (2009): Temperatur von Quellwässern langjährige Temperaturtrends. In: Jahresbericht 2008 des Hessischen Landesamt für Umwelt und Geologie: 69-73

Kontakt: Martin Reiss – reissm@geo.uni-marburg.de

SEEN

JORDAN, S., TH. HINTZE, CH. ENGELHARDT, M. ROTHE, F. GOHR & M. HUPFER: Zeitlich hoch aufgelöste Sonden-Messungen im Arendsee (Sachsen-Anhalt)

NEUMANN, C., A. KLEEBERG & M. HUPFER: Der Transport von partikulärem organischem Phosphor in einem geschichteten See

WEISS, H., B. GRÜNEBERG, G. ACKERMANN & B. NIXDORF: Einfluss des Sediments auf die Trophie in sechs eutrophen sächsischen Flachstauseen

WOLF, TH., TH. HEEGE, K. SCHENK & H.-B. STICH: Raum-zeitliche Variabilität von Phytoplankton im Bodensee und kleinen Seen – die Erfassung der patchiness von Algenverteilungen mittels verschiedener Verfahren

Deutsche Gesellschaft für Limnologie (DGL) Erweiterte Zusammenfassungen der Jahrestagung 2013 (Potsdam-Berlin), Hardegsen 2014

Zeitlich hoch aufgelöste Sonden-Messungen im Arendsee (Sachsen-Anhalt)

Sylvia Jordan¹, Thomas Hintze¹, Christof Engelhardt¹, Matthias Rothe¹, Friedemann Gohr²& Michael Hupfer¹

¹Leibniz-Institut für Gewässerökologie und Binnenfischerei, Müggelseedamm 301, 12587 Berlin, jordan@igb-berlin.de ²Landesbetrieb für Hochwasserschutz und Wasserwirtschaft, Otto-von-Guericke Str. 5, 39105 Magdeburg, Friedemann.Gohr@lhw.mlu.sachsen-anhalt.de

Keywords: Arendsee, Wassertemperatur, Sauerstoff, Sondenmessungen

Einleitung

Die Erhebung zeitlich und räumlich hoch aufgelöster Daten zur vertikalen Verteilung von mit Sonden erfassbaren Parametern eines Sees eröffnet neue Möglichkeiten, periodische Änderungen wie Seicheszyklen oder Tag-Nacht-Schwankungen sowie episodische Ereignisse in der erforderlichen zeitlichen und räumlichen Auflösung zu erfassen. Mit den üblichen Terminmessungen ist z. B. das kurzzeitige Auftreten von Phytoplankton-Massenentwicklungen in verschiedenen Horizonten nicht erfassbar. Auch für Langzeituntersuchungen sind hoch aufgelöste Messungen der Wassertemperatur unverzichtbar, insbesondere wenn es um die exakte Bestimmung der Schichtungsdauer geht.

Eine automatische Messstation auf dem Arendsee (Sachsen-Anhalt) erhebt zeitlich hoch aufgelöste Daten der gängigen meteorologischen Parameter und der wichtigsten Wasserparameter im Epilimnion, die online übertragen werden. Hierdurch können kurzzeitige extreme Witterungsereignisse detektiert und die Reaktion des Wassers darauf nachvollzogen werden. Mit Hilfe eines Profilers werden zudem Tiefenprofile aufgezeichnet. Auf der Grundlage der Messungen können konventionelle Monitoringprogramme optimiert werden.

Untersuchungsgebiet

Der Arendsee befindet sich im Norden von Sachsen-Anhalt in der Region Altmark. Mit einer Fläche von 5,13 km² ist er der größte natürliche See dieses Bundeslandes. Die maximale Tiefe beträgt 49 m, die durchschnittliche Tiefe 29 m (Abb. 1). Aktuelle hydrologische Untersuchungen gehen von einer Wasseraufenthaltszeit von ca. 40 Jahren aus.

In den letzten Jahren wurde das Monitoring am Arendsee intensiviert. Dazu wurde Anfang 2010 an der tiefsten Stelle des Sees eine automatische Messplattform installiert. Neben den meteorologischen Parametern werden dort alle 10 Minuten mit einer Multiparametersonde der Firma YSI (Modell 6600 V2/4) Wassertemperatur (T_W), pH-Wert, Sauerstoffkonzentration (O₂), Leitfähigkeit (Lf), Chlorophyll a (Chl a.), Trübung sowie Phycocyanin in 1,5 m Wassertiefe gemessen. Die Messwerte werden unter www.igb-berlin.de/arendsee.html veröffentlicht. Die betriebene Profilereinheit (ISW Wassermesstechnik) liefert seit Sommer 2012 zweimal täglich (2 und 14 Uhr) Tiefenprofile der gleichen Parameter in 1m-Intervallen.

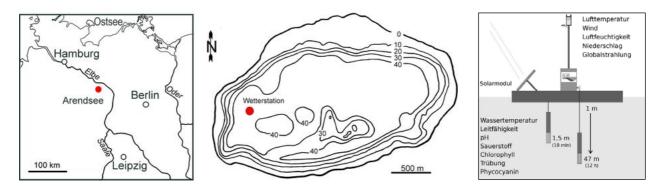


Abb. 1: Lage und Tiefenkarte des Arendsees, Schema der Messstation mit Profilereinheit

Ergebnisse und Diskussion

Temperatur und Sauerstoff

Mit beginnender Erwärmung und steigender Strahlungsintensität im Frühjahr kommt es zur Ausbildung einer thermischen Schichtung im See. Das durchmischte, warme Oberflächenwasser wird durch einen Temperaturgradienten (Thermokline) vom darunterliegenden stagnierenden, kalten Wasserkörper getrennt. Periodische Schwankungen von Temperatur und Sauerstoff in der Thermokline sind auf Seiches zurückzuführen (Abb. 2). Die Amplitude der internen Wellen liegt im Meterbereich und die Periode beträgt im Arendsee ca. 6 Stunden (Bernhardt & Kirillin 2013).

Jedes Jahr nach Beginn der Stagnationsphase bildet sich im Arendsee ein metalimnische O₂-Minimum aus, das im August meist bis zu einer Tiefe von 10 bis 12 m reicht (Abb. 2 unten). In dieser Schicht kommt es zu Sauerstoffverlusten, die zu einer sauerstofffreien Zone von drei bis fünf Metern führt. Im Herbst wandert die Thermokline und somit auch das O₂-Minimum in tiefere Wasserschichten ab, wobei dieses durch Vermischung mit gesättigtem Wasser des Epilimnions langsam wieder aufgefüllt wird.

Das Sauerstoffminimum entsteht, weil das Licht wegen der Trübung des Gewässers nicht bis in die Thermokline reicht. Dadurch dominieren hier heterotrophe Prozesse, die hauptsächlich Sauerstoff aber auch andere Elektronenakzeptoren verbrauchen. Die relativ hohen Temperaturen im Metalimnion ermöglichen einen gegenüber den darunter liegenden Schichten verstärkten Abbau der Sinkstoffe. Möglicherweise spielt bei der Ausbildung des O₂-Defizits auch die Akkumulation von frischer, gut abbaubarer organischer Substanz eine Rolle.

Wenn während warmer Sommerperioden die für die Durchmischung des Epilimnions sorgenden Faktoren Konvektion (durch einen nächtlichen, an der Oberfläche erzeugten Temperaturgradienten) und Wind schwach sind, kommt es gewöhnlich zur Ausbildung einer "Doppelschichtung" des Epilimnions, d. h. eine dünne warme Deckschicht liegt stabil über dem gut durchmischten, geringfügig kälteren und dickeren Epilimnion. Ende Juli 2013 kam es stattdessen zu einem stetigen Temperaturgradienten von der Oberfläche bis in eine Wassertiefe von 10 m und somit zur Auflösung des klassischen Epilimnions (Abb. 3). Dieses bislang im Arendsee nicht beobachtete Schichtungsverhalten erklärt sich zum einen aus der Abfolge mehrerer heißer Tage mit Lufttemperaturen von über 28°C, zum anderen mit einem starken Phytoplanktonvorkommen, das die optischen Eigenschaften des Wassers veränderte und dadurch eine größere Wärmeaufnahme möglich machte. Beides führte zu einer kontinuierlichen Erwärmung der Oberfläche. Sehr warme

und windstille Nächte (> 20°C), in denen die Wassertemperatur nicht über der Lufttemperatur lag, sorgten für ausschließlich diffusiven Transport der Wärme in die Tiefe.

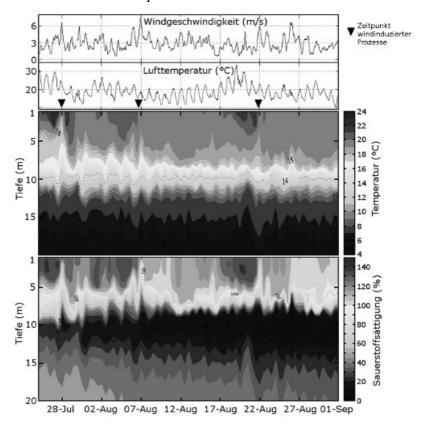


Abb. 2: Windgeschwindigkeit, Lufttemperatur, Tiefenverteilung bis 20 m von Wassertemperatur und Sauerstoffsättigung vom 25.07. bis 01.09.2012

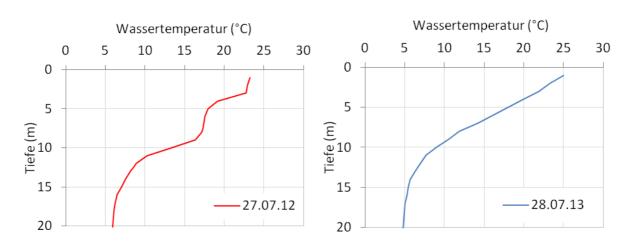


Abb. 3: Ausbildung einer "Doppelschichtung" des Epilimnions im Jahr 2012 (links) und eines homogenen Temperaturgradienten bis in 10 m Wassertiefe im Jahr 2013 (rechts).

Aufgrund der zeitlich hoch aufgelösten Messungen konnte im Jahr 2013 an der Messstation ein auffälliges Ereignis aufgezeichnet werden, das innerhalb kurzer Zeit zu einem starken Sauerstoffschwund an der Wasseroberoberfläche führte. Ende Juli kam es nach einer Hitzeperiode zu dem Durchzug einer Gewitterfront mit erhöhten Windgeschwindigkeiten. Wegen der ungewöhnlichen Nähe des metalimnischen O₂-Minimums zur Oberfläche wurde ein drastischer Einbruch der

Sauerstoffkonzentration von 8,2 mg L⁻¹ auf 2,2 mg L⁻¹ registriert. Wassertemperatur und pH-Wert verringerten sich ebenfalls deutlich (Abb. 5).

Hierbei handelte es sich um windinduzierte "upwelling"-Prozesse, bei dem metalimnisches Wasser an die Oberfläche gelangte. Durch den anhaltenden Westwind wurden die internen Seiches intensiviert und deren Amplitude erreichte in Ufernähe die Höhe des Epilimnions. Da der Ort der Messungen relativ nah am Ufer liegt, konnte das metalimnische Wasser in 1,5m Tiefe detektiert werden: Nahezu alle gemessenen Parameter zeigten charakteristische Werte für Wasser aus dem Metalimnion $(O_2\downarrow, T_W\downarrow, pH\downarrow, Lf\uparrow)$. Es ist anzunehmen, dass bei dem Ereignis der Sauerstoffeinbruch in einem begrenzten Areal im Westen des Sees auftrat, aber weite Teile des Sees trotzdem gut mit Sauerstoff versorgt blieben. Nach fünf Stunden wurden die Ausgangswerte wieder nahezu erreicht.

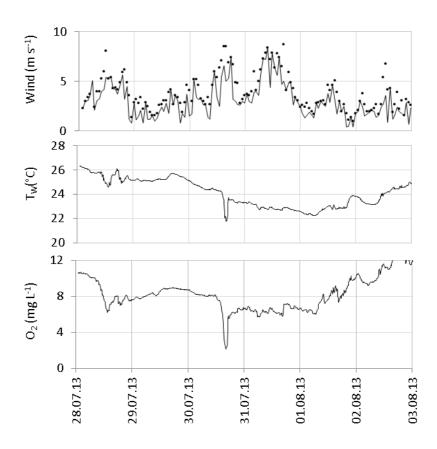


Abb. 5: Windgeschwindigkeit (Std.-Mittel mit Windspitzen), Wassertemperatur (WT) und O₂-Konzentration (10-min-Messswerte) in 1,5 m Tiefe vom 28.07. bis 03.08.2013.

Chlorophyll a

Flagellaten sind fähig, zum Zweck der Photosynthese am Tag in Richtung Oberfläche zu wandern. In der Nacht gelangen sie zur Nährstoffaufnahme mit Hilfe von Konvektionsströmen zur oberen Grenze der Thermokline. Da Tiefenprofile am Tag und in der Nacht gemessen wurden, konnte diese Vertikalmigration besonders Mitte August 2013 nachgewiesen werden (Abb. 6)

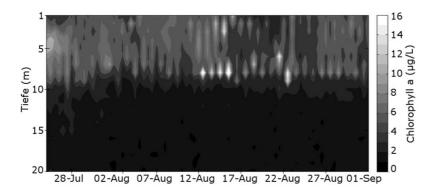


Abb. 6: Chlorophyll a-Tiefenverteilung bis 20 m.

Einfluss der Messfrequenz

Insbesondere die kontinuierliche Messung von Chlorophyll a ist sinnvoll, da das verstärkte Auftreten von Phytoplankton sehr spontan und kurzzeitig erfolgen kann. So kann es passieren, dass mit Einzelmessungen eine Phytoplanktonblüte nicht vollständig, gar nicht oder überbewertend erfasst wird. Ein rechnerischer Vergleich mit den gemessenen Chlorophyll a-Konzentrationen zeigt, dass eine geringe Messhäufigkeit zu Fehlinterpretationen bzw. Ungenauigkeiten führen kann (Tab. 1).

Tab. 1: Vergleich der gemessenen Chl. a-Konzentrationen zeitlich hoch aufgelöster Sondenmessungen mit denen hypothetischer Probenahme-Frequenzen.

Vegetationsperiode (April-Oktober)		Chl. a-Konzentration Mittelwert (µg/L)	Anzahl der Messungen	
Alle Messungen (10 min.)		7,4	29585	
Eine Messung um 12:00 Uhr	täglich	7,0	205	
	alle 7 Tage	6,8 – 7,4	30	
	alle 14 Tage	6,2 – 8,0	15	
	alle 28 Tage	6,1 – 8,4	8	
	alle 56 Tage	4,0 – 12,2	4	

Schlussfolgerungen

Mit hoch aufgelösten Sondenmessungen können konventionelle Monitoringprogramme optimiert und Probennahmetermine an entsprechende Situationen angepasst werden.

Durch die Erfassung von kurzzeitigen Extremereignissen und kritischen Konstellationen insbesondere hinsichtlich der Sauerstoffkonzentration können präventive Maßnahmen zur Gefährdungsverminderung eingeleitet werden.

Die Erfassung von Klimatrends sowie die Bewertung eines Gewässers werden erleichtert, wenn der Eintrittszeitpunkt für einen Zustand genau bestimmt werden kann, die Variabilität der Messwerte bekannt ist und verlässliche Mittelwerte gebildet werden können.

Literatur

Bernhardt, J. & G. Kirillin (2013) Seasonal pattern of rotation-affected internal seiches in a small temperate lake. Limnology and Oceanography. 58(4), S.1344-1360.

Hupfer, M. & S. Jordan (2013) Ermittlung des Gefährdungspotentials durch Sauerstoffschwund im Arendsee. Berlin 31 S.

Deutsche Gesellschaft für Limnologie (DGL) Erweiterte Zusammenfassungen der Jahrestagung 2013 (Potsdam-Berlin), Hardegsen 2014

Der Transport von partikulärem organischem Phosphor in einem geschichteten See

Catherin Neumann¹, Andreas Kleeberg² & Michael Hupfer¹

¹Leibniz-Institut für Gewässerökologie und Binnenfischerei, Müggelseedamm 301, 12587 Berlin, catherin.neumann@igb-berlin.de, ² Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e. V. , Eberswalder Straße 84, 15374 Müncheberg

Keywords: Phosphor, Sauerstoffminimumzone, Sedimentationsgeschwindigkeit (Stokes), Dichtegradient, pelagische Redoxkline

Einleitung

Hinreichend tiefe Seen der gemäßigten Breiten weisen während der Sommermonate eine dichteabhängige Temperaturschichtung auf, die den vertikalen Wärmetransport zwischen Epi-, Meta- und Hypolimnion verhindert. Die dynamische Viskosität des Wassers steigt mit abnehmender Temperatur an, wodurch sich in einem geschichteten See mit zunehmender Tiefe der Reibungswiderstand für sedimentierende Partikel erhöht. Dies kann einen entscheidenden Einfluss auf das Sedimentationsverhalten von Partikeln in einem See haben. So könnten sich beispielsweise Partikel im Metalimnion akkumulieren. Die metalimnische Akkumulation von aussinkender Biomasse hat eine intensive Sauerstoffzehrung zur Folge. Es kommt zur Ausprägung pelagischer Redoxklinen, die aufgrund der Intensität biogeochemischer Reaktionen als "Hot Spots" bezeichnet werden (McClain et al. 2003). Ihre Bedeutung für den Nährstoffhaushalt eines Sees wird mit fortschreitender Klimaerwärmung steigen, da eine zunehmende Dauer und Stabilität der thermischen Schichtung prognostiziert wird (Gerten & Adrian 2002; Hupfer & Jordan 2011).

Zur Bestimmung des Transportes des partikulären organischen Phosphors (P) und seines Abbaus wurden im Bereich des metalimnischen Sauerstoffminimums im Arendsee das Größenspektrum und die Sedimentation der Partikel sowie die P-Freisetzung aus dem sedimentierenden Material untersucht.

Material und Methoden

Untersuchungsgewässer

Der hocheutrophe Arendsee ($Z_{max} = 51$ m, A = 5,13 km²) in Sachsen-Anhalt ist ein kalkreicher Subrosionssee, der durch eine wannenartige Morphologie und eine lange Wasseraufenthaltszeit von ca. 40 Jahren charakterisiert ist (Hupfer & Jordan 2011). Die gegenwärtige jährliche mittlere Konzentration des Gesamt-P (TP) beträgt 190 μ g L⁻¹. Während der Sommerstagnation bildet sich alljährlich im See ein metalimnisches Sauerstoffminimum aus.

Exposition von Sedimentationsfallen

In den Zeiträumen Juni bis November 2011, Mai bis Dezember 2012 und im Mai 2013 wurden an der tiefsten Stelle des Arendsees Sedimentationsfallen ober- (5 m) und unterhalb (15 m) des Me-

talimnions exponiert. Die Sedimentationsfallen, bestehend aus jeweils einem Zylinderpaar (Ø 9 cm, H = 100 cm), wurden im Abstand von zwei bis vier Wochen gewechselt. Veränderungen des Materials durch mikrobielle Aktivität während der Exposition wurden durch die Zugabe von 0,11% Formaldehyd verhindert. Die Trockenmasse des sedimentierten Materials wurde durch Filtration über Celluloseacetat-Filter (0,45 μm, Sartorius) bestimmt. Nach Aufschluss mit Schwefelsäure und Wasserstoffperoxid wurde die TP-Konzentration als gelöster reaktiver P (SRP) photometrisch bestimmt (Zwirnmann et al. 1999).

Analyse der Partikelgrößenspektren

Das Partikelgrößenspektrum im Freiwasser des Arendsees wurde im Labor mit dem Partikelmessgerät Abakus®mobil fluid (Fa. Klotz) in 32 definierten Größenklassen von 1,0 bis 139 µm Partikeldurchmesser bestimmt. Es wurde ein Vorfilter von 200 µm Porengröße verwendet.

Kalkulation der Sedimentationsgeschwindigkeiten und Aufenthaltsdauer der Partikel

Die theoretische Sedimentationsgeschwindigkeit der Partikel wurde einerseits nach Stokes (1851) (Gl. 1) mit deren Äquivalentdurchmessern und andererseits nach Stabel (1987) (Gl. 2) basierend auf den *in situ* bestimmten Sedimentationsraten berechnet. Die Aufenthaltsdauer der Partikel in einer definierten Wasserlamelle wurde ebenfalls nach Stabel (1987; Gl. 3) berechnet.

$$S = Mottasadimoniations gosohwindigkoit$$

$$S = \frac{Sedimentations fluss der Trackenmasse}{Kanzentration der Trackenmasse}$$

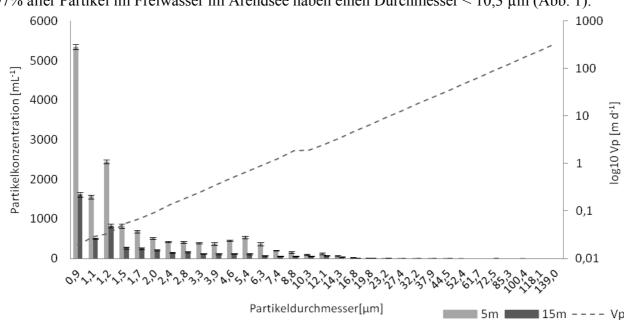
$$S = \frac{g m^{-2} d^{-1}}{g m^{-8}} = m d^{-1}$$

$$T = Partikolaufenthaltszeit$$

$$\tau = \frac{M Chtigkeit der Wasseriamelle}{Sedimentations geschwindigkeit}$$

$$T = \frac{m}{m d^{-1}} = d$$

$$T = \frac{m}{m d^{-1}} = d$$


$$T = \frac{m}{m d^{-1}} = d$$

Abbauexperiment zur Bestimmung der P-Freisetzung aus partikulärem organischem Material

Im Frühjahr 2013 wurde mit Sedimentationsfallen in 5 und 15 m Tiefe über einen Zeitraum von 14 Tagen Material gesammelt. Dieses wurde vom Zooplankton > 0,5 mm getrennt und in Braunglas-Flaschen (20 mL) im Klimaschrank bei 10°C und leichtem Schütteln inkubiert. Zweimal wöchentlich wurde die SRP-Konzentration bestimmt, um die P-Freisetzung aus dem partikulären Material zu quantifizieren.

^{*}Berechnung nach Stokes (Gl.1) erfolgt für T = 20°C und ρ_p = 1500 kg m⁻³.

Ergebnisse und Diskussion

97% aller Partikel im Freiwasser im Arendsee haben einen Durchmesser < 10,3 μm (Abb. 1).

Abbildung 1: Partikelgrößenspektrum und Partikelkonzentration im Arendsee in 5 und 15 m Tiefe im Juli 2012; Sedimentationsgeschwindigkeit (V_p) nach Stokes (Gl. 1).

Dies

ergibt eine mittlere V_p (Stokes) von 0.02 - 1.83 m d^{-1} . Die Partikelkonzentrationen sind in 5m Wassertiefe (Epilimnion) im Durchschnitt 68% höher als in 15 m (Metalimnion), da dort auch die maximale Biomasseproduktion stattfindet. Eine Verschiebung des Partikelgrößenspektrums von größeren zu kleineren Partikeln während der Sedimentation, beispielsweise durch mikrobiellen Abbau, war nicht nachweisbar.

Parameter	August 2011		Juli 2012		August 2013*	
Wassertiefe [m]	0-5	5-15	0-5	5-15	0-5	5-15
Sedimentationsgeschwindigkeit [m d ⁻¹]	0,59	0,70	0,66	0,64	0,37	0,54
Partikelaufenthaltszeit [d]	8,5	14,3	7,6	15,6	13,5	18,5

Tabelle 1: Sedimentationsgeschwindigkeit nach Stabel (Gl. 2) sowie theoretische Aufenthaltszeit von Partikeln (Gl. 3) im Epi- und Metalimnion während der Stagnationsphasen in 2011-2013

Obwohl Stokes von idealisierten Bedingungen, wie Kugelform der Partikel und konstanter Dichte ausgeht, stimmen die V_p nach Stokes und Stabel (Abb. 1; Tab. 1) für das Partikelgrößenspektrum im Arendsee gut überein. Aus der Berechnung nach Stabel ergibt sich eine mittlere V_p aller Partikel von 0.37 - 0.70 m d^{-1} . Die Abweichung kann leicht erklärt werden, da es sich bei der Kalkulation

^{*}In diesem Zeitraum mussten der Fallenwechsel und die Aufnahme des Seston-Tiefenprofils aus technischen Gründen 9 Tage versetzt stattfinden. Die Ausgangskonzentration des Sestons zur Berechnung nach Stabel wurde daher als Mittelwert der entsprechenden Konzentrationen in den Monaten Juli und August ermittelt.

nach Stabel stets um eine mittlere Geschwindigkeit des gesamten suspendierten partikulären Materials (SPM) handelt, wohingegen der Fokus bei Stokes auf dem Größenspektrum liegt und keine Gewichtung der einzelnen Größenklassen vorgenommen wird. Die V_p nach Stabel ergibt eine mittlere Aufenthaltszeit im Metalimnion von ca. 14 - 18 Tagen. Ein verlangsamter Transport der Partikel im Bereich des Metalimnions kann nicht gezeigt werden, obwohl die Verlangsamung an einem Temperaturgradienten von 20 zu 5°C, wie er im Arendsee während der Stagnation besteht, theoretisch ca. 34% betragen müsste.

Parameter	August	2011	Juli 2	2012	Augus	st 2013
Wassertiefe [m]	5	15	5	15	5	15
SPM-Flux [g m ⁻² d ⁻¹]	1,6	0,7	4,0	2,3	2,2	1,0
Verringerung der Sedimentations- rate zwischen 5 und 15 m	569	%	439	?⁄o	55	%
TP-Flux [mg m ⁻² d ⁻¹]	5,0	3,0	6,0	5,7	5,4	4,9
Verringerung der Sedimentations- rate zwischen 5 und 15 m	409	%	5%	6	99	%

Tabelle 2: Sedimentationsraten des Gesamtphosphors (TP) und des suspendierten partikulären Materials (SPM) im Arendsee in 5 und 15 m Wassertiefe während der Stagnationsphasen in 2011-2013

Während der sommerlichen Schichtungsperiode im Arendsee kommt es zu einer deutlichen Abnahme der Sedimentationsrate (Tab. 2) im Bereich des metalimnischen Sauerstoffminimums. Weiterhin kommt es zu einer Abnahme an partikulärem P, die allerdings in ihrer Ausprägung zwischen den Jahren stark variiert. Die Abnahme der Sedimentationsrate korreliert mit der deutlichen Abnahme der Partikelkonzentration zwischen 5 und 15 m Tiefe (Abb. 1).

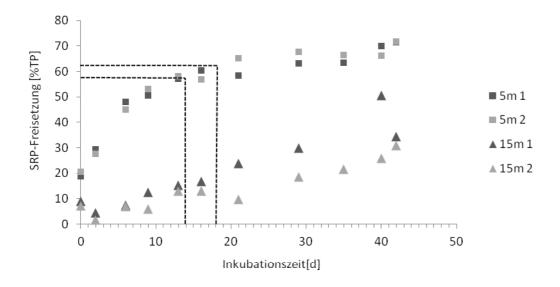


Abbildung 2: SRP-Freisetzung während des Abbauexperimentes mit Fallenmaterial (Ansätze 1 und 2 sind Parallelen) aus 5 und 15 m Tiefe im Mai 2013; markiert ist die vorab berechnete Aufenthaltszeit im Metalimnion

Das Material aus dem Epilimnion setzt in den ersten 2-3 Wochen bis zu 60% des TP frei, wobei insgesamt max. 72% freigesetzt werden (Abb. 2). Dies stimmt mit bisherigen Befunden überein, wonach innerhalb von 10-14 Tagen 55-66% des partikulären P aus Diatomeen-Populationen in Laborversuchen remineralisiert wurden (Kamatani 1969). Das Material aus dem Metalimnion hingegen setzt im selben Zeitraum nur bis zu 23% frei bei einer maximalen Freisetzung von 31-51%. Da das Material aus 5 und 15 m Tiefe sich hinsichtlich des ursprünglichen TP-Gehaltes kaum unterscheidet, ist die Abweichung in der Freisetzungsaktivität mit den verschiedenen Biozönosen zu erklären. Im Epilimnion können aufgrund guter Licht- und Sauerstoffverfügbarkeit sowohl photoautotrophe als auch heterotrophe Organismen leben. Im lichtfreien, nahezu anaeroben Metalimnion sind hingegen nur chemoautotrophe und heterotrophe Organismen lebensfähig. Da der anaerobe Stoffwechsel jedoch energetisch ungünstiger als der aerobe ist, verläuft der Abbau des organischen Materials langsamer und die P-Freisetzung bleibt unvollständig (Harvey et al. 1995).

Schlussfolgerungen

Nach den in zwei unabhängigen Ansätzen ermittelten und gut übereinstimmenden Sedimentationsgeschwindigkeiten halten sich die aussinkenden Partikel theoretisch ca. 14 bis 18 Tage im Metalimnion auf. Obgleich mit dem Aussinken der Partikel keine Veränderung ihres Größenspektrums und keine Verlangsamung festgestellt wurde, spricht die pelagische Mineralisierung und P-Freisetzung (bis zu 60%), bei zukünftig längerer Schichtungsdauer des Sees, für einen deutlich verzögerten P-Transport zum Sediment.

Danksagung

Die Untersuchungen wurden mit Mitteln des DFG-Projektes "RedoxPhos" (HU 740/5-1) unterstützt. Wir möchten ganz herzlich den Mitarbeitern der Abteilung Chemische Analytik und Biogeochemie (IGB Berlin) für die Durchführung chemischer Analysen sowie der Arbeitsgruppe Biogeochemie für die Hilfe bei den Probenahmen danken. Das Partikelmessgerät wurde uns freundlicher Weise von Dr. Lothar Paul (TU Dresden, Neunzehnhain) zur Verfügung gestellt.

Literatur

- Gerten, D., Adrian, R. (2002). "Effects of climate warming, North Atlantic Oscillation, and El Nino-Southern Oscillation on thermal conditions and plankton dynamics in northern hemispheric lakes." <u>The Scientific World Journal</u> 2: 586-606.
- Harvey, H. R., Tuttle, J. H., Tyler Bell, J. (1995). "Kinetics of phytoplankton decay during simulated sedimentation: Changes in biochemical composition and microbial activity under oxic and anoxic conditions." Geochimica Et Cosmochimica Acta **59**(16): 3367-3377.
- Hupfer, M., Jordan, S. (2011). "Analyse von Langzeitdaten zum Temperaturverhalten von Seen am Beispiel des Arendsees (II): Klimawandel und Wasserqualität-Ergebnisbericht. Auftraggeber: Landesbetrieb für Hochwasserschutz und Wasserwirtschaft. Magdeburg."
- Kamatani, A. (1969). "Regeneration of Inorganic Nutients from Diatom Decomposition." <u>Journal of the Oceanographical Society of Japan</u> **25**(2): 63-74.
- McClain, M. E., Boyer, E. W., Dent, C. L., Gergel, S. E., Grimm, N. B., Groffman, P. M., Hart, S. C., Harvey, J. W., Johnston, C. A., Mayorga, E., McDowell, W. H., Pinay, G. (2003). "Biogeochemical Hot Spots and Hot Moments at the Interface of Terrestrial and Aquatic Ecosystems." <u>Ecosystems</u> 6(4): 301-312.
- Stabel, H.-H. (1987). "Settling velocity and residence time of particles in Lake Constance." <u>Swiss Journal Of Hydrology</u> **49**(3): 284-293.
- Stokes, G. G. (1850). "On the effect of internal friction of fluids on the motion of pendulums." <u>Transactions of the Cambridge Philisophical Society 9.</u>
- Zwirnmann, E., Krüger, A., Gelbrecht, J. (1999). "Analytik im Zentralen Chemielabor des IGB." <u>Berichte</u> des IGB **9**: 3-24.

Deutsche Gesellschaft für Limnologie (DGL) Erweiterte Zusammenfassungen der Jahrestagung 2013 (Potsdam-Berlin), Hardegsen 2014

Einfluss des Sediments auf die Trophie in sechs eutrophen sächsischen Flachstauseen

Heidi Weiss1, Björn Grüneberg1, Gerald Ackermann2 & Brigitte Nixdorf1

¹ Brandenburgische Technische Universität Cottbus-Senftenberg, Lehrstuhl Gewässerschutz, 15526 Bad Saarow, Seestr. 45; heidi_weiss@gmx.de, grueneb@tu-cottbus.de, ² Landestalsperrenverwaltung des Freistaates Sachsen, Referat Wassergüte, Bahnhofstraße 14, 01796 Pirna; gerald.ackermann@ltv.sachsen.de

Keywords: Flachseen, Stauseen, Talsperren, Sediment, Trophie, Phosphor

Einleitung

Ziel der Arbeit war eine Einschätzung der Relevanz der internen Phosphor (P)-Belastung für die Trophie der Untersuchungsgewässer anhand der semi-quantitativen Auswertung von Langzeitdaten der Gewässergüte und Sedimentdaten. Dafür wurden zunächst 1) die Voraussetzungen für die P-Bindung und P-Freisetzung im Sediment überprüft, d. h. a) die für die P-Freisetzung relevanten Prozesse und Faktoren und b) die Sorptionsfähigkeit des Sediments. Anschließend wurde 2) die Relevanz der internen Belastung für den a) saisonalen Verlauf der seeinternen P-Konzentration (kurzfristige Relevanz) und b) für die langfristige trophische Entwicklung (langfristige Relevanz) ermittelt. Aus den Ergebnissen der Arbeit wurde die in Abbildung 1 dargestellte, stark vereinfachte Entscheidungsmatrix abgeleitet.

Material und Methoden

Untersuchungsgewässer

Analysiert wurden Langzeitdatensätze der von der Landestalsperrenverwaltung des Freistaates Sachsen (LTV) bewirtschafteten Talsperren Bautzen (BTZ), Quitzdorf (QUI) und Schömbach (SCHÖM), der Speicher Radeburg 2 (RAD2), der Stausee Rötha (RÖT) und der Untere Großhartmannsdorfer Teich (UGHT). Alle Gewässer sind polymiktisch bzw. instabil dimiktisch (BTZ) und hochproduktiv (eutroph bis polytroph), haben eine geringe Wasseraufenthaltszeit (< 1 Jahr) und eine ähnliche Belastungsgeschichte mit bedeutender P-Lastreduktion nach 1990. Zur Verfügung standen Daten der Gewässergüte (monatlich bzw. 14-tägig über 10 Jahre), Sedimentporenwasser und Feststoffdaten von 8 Sedimentschichten bis in etwa 30 cm Tiefe sowie monatliche bzw. tentative jährliche P-Bilanzen.

Charakterisierung von P-Freisetzungsprozessen und oxischer P-Bindungsfähigkeit

Für die **Identifikation der relevanten Freisetzungsprozesse** (Abbildung 1, 1 a) wurden der saisonale Verlauf der TP-Konzentration über zehn Jahre anderen Parametern (NO₃, NH₄, Fe, pH und Temperatur) gegenübergestellt. Die Relevanz der **P-Freisetzung aus unterschiedlichen P-Formen im Sediment (P-Quellen)** wurde zudem auf Basis einer sequentiellen P-Extraktion (nach Psenner et al. 1984) interpretiert.

Eine ausreichende **oxische Sorptionskapazität des Sediments** (Abbildung 1, 1 b) wurde für ein molares Fe:P Verhältnis > 8,3 im Sediment (Jensen et al. 1992) und Fe:SRP > 2 im Porenwasser (Gunnars et al. 2002) unterstellt, sofern Sulfid nicht als bevorzugter Bindungspartner für Fe relevant wird. Die **Relevanz von Sulfid für die Immobilisierung von Fe** wurde mittels empirischer Werte

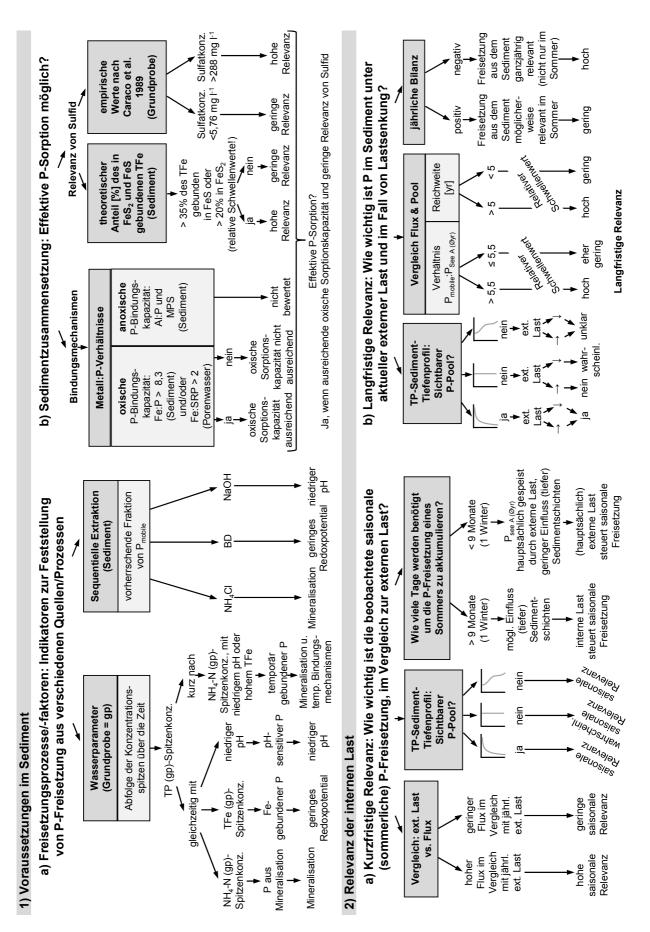


Abbildung 1. Entscheidungsschemata. NH₄Cl/BD/NaOH = sofort löslicher/redox-sensitiver/organischer und basenlöslicher P im Sediment; ext. Last " \rightarrow " gleichbleibend bzw. " \downarrow " sinkend, MPS = Metall:P-Summenquotient nach Maaßen (2003), P_{mobile}= potentiell mobiler P-Pool, P_{See A (Øyr)} = mittlerer jährlicher P-Inhalt im See, SRP = löslicher reaktiver P, yr = Jahr.

nach Caraco et al. (1989) anhand der SO_4 -Konzentration sowie durch eigene Berechnungen des theoretisch möglichen Anteils [%] des in FeS_x gebundenen Gesamteisens (TFe) eingeschätzt. Die relativen Schwellenwerte wurden durch den Vergleich der untersuchten Gewässer innerhalb der Arbeit festgelegt.

Beurteilung der Relevanz der internen Last

Die kurzfristige saisonale interne Last (Abbildung 1, 2 a) im Sinne von sommerlicher P-Freisetzung aus dem Sediment wurde als relevant betrachtet, wenn die P-Rücklösungsrate (als diffusiver Flux) hoch war im Vergleich zur jährlichen externen Last bzw. sofern vorhanden zum langjährigen August-Mittelwert der externen Last (Lewandowski 2002, Schauser et al. 2003). Eine hohe Relevanz der P-Rücklösung wurde zudem unterstellt, wenn für die Speisung der sommerlichen Netto-Freisetzung ein sehr langer (winterlicher) Netto-Akkumulationszeitraum nötig war. Eine TP-Anreicherung im Oberflächensediment wurde als Indiz für kurzfristige als auch für langfristige Relevanz der internen Last gewertet (Tabelle 1).

Die langfristige Relevanz der internen Last wurde in Form von zwei Szenarien untersucht: bei Annahme einer unveränderten externen Last (Abbildung 1, 2b: \rightarrow) und unter Annahme einer Lastsenkung (\downarrow). Zur Einschätzung der langfristigen Relevanz wurde zudem ein Vergleich von P-Poolgrößen (P-Massen) und P-Fluxgrößen (Raten) durchgeführt. Im Zuge dessen wurde das Verhältnis des potentiell mobilen P-Pools (P_{mobile}, berechnet aus dem TP-Sediment-Tiefenprofil nach Lewandowski 2002) zum mittleren jährlichen P-Inhalt im See (P_{See A (Øyr)}) ermittelt. Aus dem Vergleich der untersuchten Gewässer ergab sich ein relativer Schwellenwert von 5,5, über dem die langfristige Relevanz als hoch eingestuft wurde. Weiterhin wurde die zeitliche Reichweite [yr] des potentiell mobilen P-Pools im Sediment berechnet, d. h. die Anzahl von Jahren, die unter Annahme eines kontinuierlichen sommerlichen Fluxes bis zur Erschöpfung des P-Pools benötigt werden. Aus dem Vergleich der untersuchten Gewässer ergab sich ein relativer Schwellenwert von 5 Jahren, bei dessen Überschreitung die langfristige Relevanz als hoch bewertet wurde.

Auch die jährliche P-Bilanz der Gewässer wurde für die Beurteilung der langfristigen Relevanz herangezogen. Eine positive jährliche Bilanz wurde dabei mit eher geringer langfristiger Relevanz assoziiert, eine negative Bilanz mit hoher langfristiger Relevanz.

Ergebnisse und Diskussion

Freisetzungsprozesse und oxische P-Bindungsfähigkeit

Als wesentliche Prozesse der P-Freisetzung wurden, wie erwartet, in vier von fünf Gewässern (BTZ, QUI, RÖT, SCHÖM) die Mineralisation (temperaturabhängige Freisetzung von organischem P) und redoxsensitive Freisetzung von Fe-gebundenem P identifiziert, während in QUI zusätzlich die pH-sensitive Freisetzung wichtig ist. In RAD2 hat die redoxsensitive Freisetzung von Fegebundenem P weniger Einfluss, da die P-Freisetzung hauptsächlich durch Mineralisation und pH-Verhältnisse gesteuert wird. Die oxische P-Bindungsfähigkeit des Sediments, interpretiert anhand der Fe:P Verhältnisse, ist in BTZ, RAD2 und RÖT gering. Weiterhin scheint Sulfid in RAD2 (nach eigenen Berechnungen) und RÖT (empirische Werte nach Caraco et al. 1989) einen störenden Einfluss auf die Fe~P-Bindungen zu haben.

Relevanz der internen Last

P-Freisetzung aus dem Sediment beeinflusst den **kurzfristigen saisonalen Verlauf** der pelagischen P-Konzentration aller Gewässer außer in SCHÖM, wo die Wasserqualität aufgrund der sehr kurzen Wasseraufenthaltszeit (11-33 Tage) hauptsächlich vom Zufluss bestimmt wird.

Tabelle 1. Schematische Darstellung der Erscheinungsformen von TP-Sediment-Tiefenprofilen und deren Interpretation hinsichtlich kurz- und langfristiger Relevanz

potentiell mobiler P- Pool sichtbar?	Profil A)	Profil B) nein	Profil C) nein	
Beispiele	QUI, RAD2, UGHT	BTZ-2	BTZ-1, RÖT, SCHÖM	
Gründe für P- Profil	 Oberflächenakkumulation bei konstanter oder steigender externer Last sediment focusing (Trichtereffekt) P-Mobilisierung und Freisetzung ist geringer als die Akkumulation (normal für tiefe Seen) 	 schnelle Diagenese Resuspension der oberen Sediment- schichten Akkumulation im Gleichgewicht mit der Diagenese (P- Freisetzung) 	 sinkende externe Last veränderte P- Sorptionseigen- schaften des Se- diments aufgrund von Zuflussände- rungen 	
kurzfristige Relevanz	ja	wahrscheinlich (Produktion = Minerali- sation)	ja (möglicherweise ganzjährig relevant)	
langfristige Relevanz				
bei aktuel- ler exter- ner Last	ja	nein	unklar (relevant bis neues Gleichgewicht er- reicht ist)	
bei Last- senkung	ja	wahrscheinlich (reduzierte externe Last resultiert in Abbau des potentiell mobilen P-Pools im Sediment)	unklar (relevant bis neues Gleichgewicht er- reicht ist)	

Für BTZ und QUI wurde festgestellt, dass der im Sommer freigesetzte P meist in wenigen Monaten bzw. in weniger als einem Winter, d. h. einer Periode positiver Nettosedimentation akkumuliert. Dies zeigt, dass die interne Last in hochbelasteten Gewässern nicht unbedingt durch einen großen P-Pool im Sediment, sondern hauptsächlich durch die externe Last gespeist wird. Interne Last ist in diesem Fall lediglich recycelte externe Last.

Hinsichtlich der TP-Sediment-Tiefenprofile wurde in die aus Tabelle 1 ersichtlichen drei Situationen unterschieden. Bei einem Sedimentprofil mit Oberflächenanreicherung (wie in Tabelle 1, Profil A, QUI, RAD2 und UGHT) kann sowohl von kurz- als auch langfristiger Relevanz ausgegangen werden. Ein gerades Profil wie Profil B (BTZ-2) spiegelt dagegen ein Gleichgewicht der Sorptionsfähigkeit des Sediments mit der derzeitigen externen Last wider und ist daher saisonal (P-Emission im Sommer) und bei Lastsenkung auch langfristig relevant, bis sich eine neue Gleichgewichtssituation eingestellt hat. Im Falle der Lastsenkung würde das Sediment verstärkt P emittieren und im Tiefenprofil würde sich nach einiger Zeit eine Abbausituation (wie in Profil C, BTZ-1, RÖT,

SCHÖM) abzeichnen. Die langfristige Relevanz ist für Profil B dagegen nicht gegeben, wenn die aktuelle externe Last und somit die Gleichgewichtssituation bestehen bleibt. Die Abbausituation in Profil C kann nicht nur durch eine Senkung der externen Last, sondern auch durch veränderte Sorptionsbedingungen im Sediment zustande kommen und weist auf eine saisonale, möglicherweise sogar ganzjährig relevante P-Emission des Sediments hin. Die langfristige Relevanz von Profil C bleibt mit den hier verwendeten Methoden unklar, da nicht bekannt ist, wie lange noch P emittiert wird.

Unter Abwägung sämtlicher Indikatoren ergibt sich eine geringe langfristige Relevanz bei aktueller externer Last für BTZ, RAD2 und SCHÖM, während eine hohe langfristige Relevanz bei aktueller externer Last für RÖT und den UGHT prognostiziert wird. Auch im Falle einer Lastsenkung würde das Sediment des UGHT langfristig als relevante P-Quelle wirken. Für BTZ, RÖT und SCHÖM sind die Auswirkungen einer Lastsenkung schwer zu beurteilen, da unklar ist, wie lange das Sediment P emittieren bzw. wie lange die Bildung eines neuen Gleichgewichts zwischen Sediment und externer Last dauern würde. Die Relevanz für RAD2 wird bei Lastsenkung aufgrund der geringen Reichweite des potentiell mobilen P-Pools der bewerteten Messstelle (4 Jahre) und deutlich geringeren P-Gehalten weiterer Messstellen als gering eingestuft. Für QUI bleibt die langfristige Situation aufgrund des sehr heterogenen Probenbilds unklar.

Der UGHT und RÖT sind die einzigen Gewässer, die sich noch in einer Übergangsphase nach der letzten Lastreduktion befinden (negative jährliche tentative P-Bilanz). Aufgrund dessen und der langfristigen Relevanz des Sedimentes erscheinen interne Maßnahmen hier sinnvoll. Bei allen weiteren untersuchten Gewässern sind interne Maßnahmen nach Abwägung aller Faktoren nicht nachhaltig erfolgsversprechend.

Danksagung

Diese Untersuchung entstand im Rahmen einer Masterarbeit. Herzlichen Dank an die Landestalsperrenverwaltung Sachsen für die Bereitstellung aller grundlegenden Daten.

Literatur

- Caraco N. F., Cole J. J., Likens G. E. 1989. Evidence for sulphate-controlled phosphorus release from sediments of aquatic systems. Nature 341:316-318.
- Gunnars A., Blomqvist S., Johansson P., Andersson C. 2002. Formation of Fe(III) oxyhydroxide colloids in freshwater und brackish seawater, with incorporation of phosphate und calcium. Geochimica et Cosmochimica Acta 66(5):745–758.
- Jensen H. S., Kristensen P., Jeppesen E., Skytthe A. 1992. Iron:phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediments in shallow lakes. Hydrobiologia 235/236:731-743.
- Lewandowski J. 2002. Untersuchungen zum Einfluss seeinterner Verfahren auf die Phosphor-Diagenese in Sedimenten, Dissertation. Humboldt-Universität, Berlin.
- Maaßen S. 2003. Vergleichende Untersuchungen über den potentiellen Eintrag von Nährstoffen in den Wasserkörper von Talsperren durch Freisetzung aus dem Sediment. Dissertation. Fakultät Mathematik und Naturwissenschaften der Technischen Universität Dresden.
- Psenner R., Pucsko R., Sager M. 1984. Die Fraktionierung organischer und anorganischer Phosphorverbindungen von Sedimenten Versuch einer Definition ökologisch wichtiger Faktoren. Arch.Hydrobiol.Beih. 70 (1):111-155.
- Schauser I., Lewandowski J., Hupfer M. 2003. Decision support for the selection of an appropriate in-lake measure to influence the phosphorus retention in sediments. Water Research 37:801-812.

Deutsche Gesellschaft für Limnologie (DGL) Erweiterte Zusammenfassungen der Jahrestagung 2013 (Potsdam-Berlin), Hardegsen 2014

Raum-zeitliche Variabilität von Phytoplankton im Bodensee und kleinen Seen – die Erfassung der patchiness von Algenverteilungen mittels verschiedener Verfahren

Thomas Wolf ¹, Thomas Heege², Karin Schenk² & Hans-Bernd Stich¹

Keywords: Bodensee, kleine Seen, Algenverteilungen, Fernerkundung, Patchiness

Einleitung

Neue optische Verfahren, wie die Satellitenfernerkundung und die in-situ Fluorometrie, bieten die Möglichkeit zu den klassischen Methoden komplementäre Informationen zur Verteilung von Algenpigmenten und damit Algen in einem Gewässer zu gewinnen. Durch diese Verfahren werden neuen Möglichkeiten eröffnet, Teilaspekte eines limnologischen Gewässermonitorings zu erfassen und bestimmte Parameter, wie z.B. Chlorophyll a, mit hoher zeitlicher wie räumlicher Auflösung zu bestimmen.

Speziell die potentiell höhere raum-zeitliche Auflösung der optischen Verfahren gestattet eine Bewertung und Abschätzung der räumlichen Verteilung von Phytoplankton und seiner zeitlichen Dynamik in Gewässern und bietet damit die Möglichkeit, eine adäquate Datenbasis zur näheren Beschreibung der raum-zeitlichen Variabilität der Algenverteilungen – der Patchiness der Algen bzw. Algenpigmente in einem See – zu erhalten.

Während im Bodensee satellitenbasierte Multispektralsensoren mit mittlerer räumlicher Auflösung dx=300...1000 m verwendet werden, um Chlorophyll a-Konzentrationen zu bestimmen, sind im Zuge neuer methodischer Untersuchungen räumlich sehr hoch aufgelöste Satelliten verwendet wurden, um Informationen zu den die Algenverteilungen auch in kleinen Seen abzuleiten. Dabei kommen Satelliten mit einer räumlichen Auflösung in der Größenordnung 30 m zum Einsatz, so dass auch relativ kleine Seen in die Beobachtung aufgenommen werden können und eine Vielzahl von Gewässern erfasst wird.

Bisherige Erfahrungen zeigen, dass die "klassischen" Methoden der Bestimmung von Algenbeständen in Seen - Auszählen und Ausmessen von Algenproben mittels Mikroskop und die HPLC-Analyse von akzessorischen Algenleitpigmenten - und die neuen optischen Verfahren, sich gegenseitig ergänzen können und zusammen eine umfassendere Datenbasis zur Charakterisierung von Algenbeständen und deren Verteilungen in Seen liefern können als die Nutzung nur eines Teils dieser Methoden. Basis der Verschneidung der mit diesen Methoden gewonnenen unterschiedlichen Parameter und Informationen, ist eine kritische Methodendiskussion und die gegenseitige Interkalibration der Verfahren bzw. eine sinnvolle gegenseitige Ergänzung der erhaltenen Parameter mit Verfahren der Geostatistik.

¹ Institut für Seenforschung der LUBW, Argenweg 50/1, 88085 Langenargen; thomas.wolf@lubw.bwl.de, ² EOMAP, Sonderflughafen Oberpfaffenhofen, Friedrichshafener Str. 1, D-82205 Gilching, heege@eomap.de

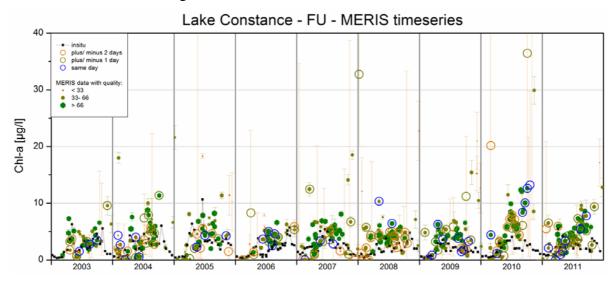
Methoden

Alternativ zu den klassischen Methoden wurden zum einen Satellitenfernerkundungsverfahren verwendet, um Informationen zu Chlorophyll a-Verteilungen im Bodensee zu gewinnen. Außerdem wurde eine FluoroProbe-Fluoreszenz-Sonde der Firma BBE-Moldaenke für fluoreszenzoptische Messungen von Algenklassen verwendet, um in situ Messungen mit hoher räumlicher und zeitlicher Auflösung zur Variabilität von Algenklassen vornehmen zu können.

Satellitenfernerkundung

Im Rahmen des europäischen Projektes FRESHMON (FP7 Copernicus Downstream Project) werden durch die Firma EOMAP (Earth Observation & Mapping | - www.eomap.de) Fernerkundungsprodukte – in diesem Kontext insbesondere Chlorophyll a Karten -für den Bodensee erstellt. Diese basieren auf den Daten der räumlich mit mittleren Auflösungen arbeitenden und spektral hochaufgelösten Satellitenscanner MERIS und MODIS.

Darüber hinaus wurden in einem weiteren Pilotprojekt Möglichkeiten der Nutzung von Satellitenscannern mit räumlich sehr hochaufgelösten Informationen bei geringerer spektraler Auflösung getestet. Im Gegensatz zu spektral hochauflösenden Scannern ist für diese räumlich hochauflösenden Scanner eine Unterscheidung zwischen den Absorptionsspektren unterschiedlicher Wasserinhaltsstoffe (z.B.: Gelbstoffe, Chlorophyll a) mit großen Unsicherheiten verbunden. Die aus den Sensoren auch hochaufgelöster Satelliten abgeleitete Streuung der partikulären Materialien im Wasser sowie die Gesamtabsorption von gelösten und suspendierten Stoffen kann jedoch über den meisten pelagialen Gewässern im Epilimnion sehr zuverlässig abgeleitet werden. Voraussetzung hierzu sind komplett physikalisch basierte Analyseverfahren der Satellitendaten. Der Gültigkeitsbereich ist durch die radiometrische Empfindlichkeit des Satellitensensors, die Genauigkeit der physikalischen Prozessierverfahren und deren Eignung zur Quantifizierung von Unsicherheiten definiert. In diesem Rahmen sind also physikalisch klar definierten Messgrößen aus unterschiedlichen Satellitensystemen als ableitbar, und somit weltweit vergleichbar bzw. harmonisiert zu bewerten. Die Absorption der zumeist organischen Komponenten im Wasser (Humin-/Fulvinsäuren gelöster Stoffe, lebende oder tote organische partikuläre Bestandteile) kann in Verbindung zu einer maximalen Chlorophyll-Absorption gestellt werden, ebenso wie die satellitenbestimmte Streuung partikulärer Stoffe in Relation zu einer maximalen Menge an Phytoplanktonzellen gestellt werden kann. Durch entsprechende Quantifizierung dieser Relationen kann eine somit Schätzung des Maximalwertes des im See vorhandenen Chlorophyll a-Wertes Chl-a max bestimmt werden. Bei Betrachtung der saisonalen und zeitlichen Variabilität der Messgrößen kann auch die Background-Absorption von Gelbstoff-dominierten Gewässern korrigiert werden. Die zeitliche Auflösung der Satellitenaufnahmen bei 30m räumlicher Auflösung (oder besser) liegt derzeit bei mindestens 4 Aufnahmen pro Monat, je nachdem wie viele Satellitensensoren im Monitoringsystem integriert werden. Die tatsächlich erreichte Abtastrate ist dann von den klimatischen Gegebenheiten abhängig, da die Gewässer bei geschlossener Wolkendecke nicht detektierbar sind.


Fluoreszenzoptische Bestimmung von Algenklassen mit der FluoroProbe (BBE Moldaenke)

Die FluoroProbe-Chlorophyllsonde der Firma bbe-moldanke (www.bbe-moldaenke.de) ermittelt insitu anhand der von den akzessorischen Leitpigmenten der Algen abgestrahlten Fluoreszenzcharakteristik die Konzentration von Algenleitpigmenten bzw. Algenklassen in der unmittelbaren Umgebung des Sensorkopfes dieser Sonde. Die Sonde gestattet eine Differenzierung hinsichtlich folgender Algenklassen: Grünalgen, Cyanobakterien, Diatomeen/Dinoflagellaten und Cryptophyceen, wobei spezielle weitere Algenklassen anhand ihres spezifischen fluoreszenzoptischen "fingerprints" optional hinzugefügt werden können. Die in den Untersuchungen verwendete FluoroProbe-Sonde

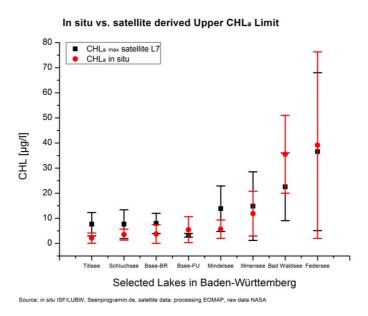
gestattet ein Samplingintervall von etwa dt=2 s, was in der praktischen Anwendung bedeutet, dass sowohl bei vertikalen wie auch horizontalen Profilen eine hohe räumliche Auflösung erhalten und die räumliche Struktur der Algenklassen gut aufgelöst werden kann.

Validation von Satellitenfernerkundungsdaten für den Bodensee

Für den Bodensee wurde eine Validation der aus den Satellitendaten abgeleiteten Chlorophyll a-Werte (Datenquelle EOMAP) anhand der Routinemonitoringdaten der IGKB (Internationale Gewässerschutzkommission für den Bodensee) vorgenommen. Als Vergleichsdaten dienen die Chlorophyll a-Werte, die aus den Bodensee-Wasserproben mittels HPLC-Analyse bestimmt werden. Zu beachten ist bei dem gezeigten Vergleich, dass derzeit für die letzten Jahre hauptsächlich Summenschöpferproben für ein Tiefenintervall von 0-20 m vorliegen, die nicht absolut mit den Tiefenintervall korrespondieren, für das die Satelliten einen Chlorophyll a-Wert ableiten und das sich für den Bodensee saisonal variabel in einem Bereich von etwa Z₉₀=3...8m bewegt. Vertikale Variationen des Chlorophyll a-Gehaltes können sich demnach durch diese unterschiedlichen Integrationsintervalle auf die erhaltenen Ergebnisse auswirken.

Abb.1 Vergleich zwischen in situ HPLC-Werten der Wasserproben an einem Messpunkt der IGKB-Routinemessungen im Bodensee (FU – Fischbach-Uttwil; an der tiefsten Stelle des Bodensee Obersee); schwarze Vierecke stellen die Chlorophyll a-Werte der HPLC-Analysen dar; andersfarbige Kreise die Werte der Satellitenfernerkundung (die Größe der Kreise zeigt die Güte der Daten an, die Farbe der umgebenden offenen Kreise die zeitliche Korrelation zwischen in situ Probenahme und Satellitenbild) (Quelle: EOMAP)

In Abb. 1 ist diese Validation anhand der Daten des MERIS-Scanners für eine räumliche Auflösung von dx=300 m dargestellt. Die schwarzen Datenpunkte stellen die Messwerte der HPLC-Analyse dar, die andersfarbigen Punkte die Chlorophyll a-Werte der Satellitenfernerkundung. Sowohl die Größenordnung der Chlorophyll a-Werte als auch der Zeitliche Verlauf der Algenentwicklung werden durch die Fernerkundungsdaten generell wiedergegeben. In einigen Jahren – speziell i 2010 und 2011 - treten im Herbst aber auch Abweichungen zwischen den in situ Messungen und den satellitengestützten Werten auf – es kommt zu einer Überschätzung der Chl-a-Werte durch die Satellitendaten. Wichtig für den Vergleich zwischen beiden Methoden ist auch die zeitliche Korrelation zwischen in situ Probenahme und Aufnahme des Satellitenbildes.

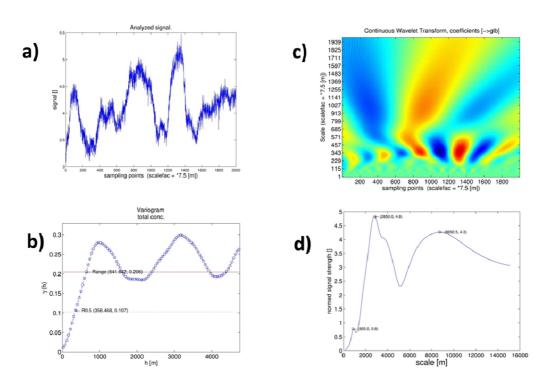

Insgesamt ist eine gute Übereinstimmung ermittelten Chlorophyll a-Werte für beide Methoden festzustellen.

Abschätzung von maximalen Chlorophyll a-Werten für kleine Seen in Baden-Württemberg

Im Rahmen des FRESHMON-Projektes wurden durch EOMAP auch Satellitenfernerkundungsprodukte für räumlich hochauflösende Satellitenscanner bereitgestellt, die eine Charakterisierung der Summe organischer Absorber (SOA) in kleinen Gewässern gestatten. Dabei können Werte bereits für Seen mit Ausdehnungen in der Größenordnung von einigen hundert Metern abgeleitet werden.

Auf der Grundlage des bereits vorher skizzierten Verfahrens kann eine Abschätzung des maximal im See auftretenden Chlorophyll a-Gehaltes Chl-a,max vorgenommen werden. Eine Validation dieser Ergebnisse anhand von in situ Messungen in einer Reihe von kleinen Seen, die mit klassischer Methodik – Wasserprobenahme mit nachfolgender HPLC-Analyse - untersucht wurden, ist in Abb. 2 zu sehen. Für beide Messmethoden sind die großen Variationen in allen betrachteten kleinen Seen zu sehen. Außerdem ist zu sehen, dass die Größenordnung der Chlorophyll a-Werte beider Methoden sehr gut übereinstimmen und die Mittelwerte der Satellitenfernerkundung eine robuste Abschätzung der maximalen Chlorophyll a-Werte für eine Reihe von Seen mit unterschiedlichen Eutrophierungsgraden gestatten.

Damit steht nach derzeitigem Erkenntnisstand ein robustes Tool zur Verfügung, mit dem für eine Vielzahl von Seen auch kleinerer Ausdehnung auf einer einheitlichen Methodik beruhend eine Abschätzung der maximal auftretenden Chlorophyll a-Werte möglich ist. Zu beachten sind natürlich immer die Gegebenheiten vor Ort und mögliche Störgrößen, wie sehr hohe- Gelbstoff oder Schwebstoffkonzentrationen.


Abb. 2 Vergleiche zwischen HPLC-Werten und Satellitenfernerkundungswerten Chl-a,max für eine Reihe von kleinen Seen mit unterschiedlichen räumlichen Ausdehnungen und Eutrophierungsgraden (Quelle: EOMAP)

Untersuchungen zu inhomogenen Verteilungen von Algenklassen im Bodensee

Mit der FluoroProbe-Chlorophyllsonde der Firma BBE-Moldaenke wurden entlang von Transekten Messungen zur Verteilung von Algenklassen im östlichen Teil des Bodensees vorgenommen. Dabei wurde der Sonde kontinuierlich Wasser aus einer Tiefe von etwa 1.5 m per Pumpsystem zugeführt. Die Messungen erfolgen mit einem zeitlich variablen Intervall dt={2...10} Sekunden, so dass eine zeitlich wie räumlich hohe Auflösung der Messungen gewährleistet ist.

Diese Messungen entlang von Transekten beschränkten sich nur auf die horizontale Verteilung der Algenklassen (in einer Wassertiefe von etwa 1.5 m) und gestatten so eine Abschätzung und Bewertung der horizontalen Variationen und Unterschiede für die fluoreszenzoptisch gemessenen Algenklassen. Eine Ergänzung dieser Horizontalinformationen durch Vertikalprofile ist möglich und wurde bei einzelnen Ausfahrten auch gewonnen. Ziel der Messungen war es, für unterschiedliche Witterungsbedingungen und saisonal bedingte Unterschiede im Schichtungsregime des Sees Aufnahmen von den auftretenden Variationen in den Konzentrationen unterschiedlicher Algenklassen aufzunehmen.

Um eine quantitative Charakterisierung dieser Inhomogenitäten zu ermöglichen und somit die Patchiness der Algenverteilungen im Bodensee beschreiben zu können, wurden verschiedene geostatistische Methoden und Signalanalyseverfahren auf die fluoreszenzoptischen Messungen angewendet: 1.) mittlere Eigenschaften der Algenverteilung: Mittelwerte und Medianwerte 2.) räumliche Variabilität: Varianz und Quantile 3.) die räumliche Persistenz und Kontinuität der Verteilungswerte: Variogramm und Variogramm-Range 4.) Strukturen und Skalen auf denen Veränderungen in den Algenverteilungen stattfinden: Spektralanalyse und Waveletanalyse. Mit dieser Kombination von Verfahren ist es möglich, verschiedene Aspekte der räumlichen Verteilungen bzw. Inhomogenitäten der Algenverteilungen – deren Patchiness – quantitativ näher zu charakterisiere (siehe Abb. 3). Diese Merkmale können in einem Eigenschaftsvektor (patchiness state vector **psv**) zusammengefasst werden.

Abb. 3 Darstellung eines Teiles der signalprocessing-Verfahren zur Analyse von räumlichen Variationen von Algenpigmenten, die entlang von Transekten im Bodensee mittels einer fluoreszenzoptischen Sonde (FluoroProbe – BBE-Moldaenke) detektiert wurden. Plot a.) totale Algenkonzentration entlang eines horizontalen Transektes b.) Berechnung des Variogrammes und des Variogrammerange für die Messung aus Bild a.) Bild c.) Wavelet-Transformation der totalen Algenkonzentration – sichtbar werden die für jeden Bereich der Registrierung lokal dominanten Skalen auf denen Variationen der Algenkonzentration stattfinden Bild d.) Summation der Waveletkoeffizienten der 2-dimensionalen Wavelet-Transformation – die global dominanten Variationsskalen werden sichtbar

Dieser Kanon von Verfahren wurde bisher auf fluoreszenzoptische Messungen entlang von Transekten angewendet und somit auf Zeitserien der Konzentrationen der verschiedenen durch die FluoroProbe bestimmten Algenklassen. Für Satellitenbilder – d.h. zweidimensionale Verteilungsabbildungen für zum Beispiel Chlorophyll-a – können diese Verfahren zum Teil direkt übernommen werden (z.B.: Mittelwerte und Varianzen) bzw. müssen für den zweidimensionalen Fall angepasst werden (z.B.: Variogramm- und Waveletanalysen). Grundsätzlich kann aber in ähnlicher Weise wie für die Analyse von Zeitserien bzw. Messungen anhand linearer Transekte auch für Satellitenbilder eine Charakterisierung der Patchiness der Algenverteilungen in der oben beschriebenen Weise erfolgen.

Zusammenfassung

Im Rahmen der Untersuchungen des FRESHMON-Projektes wurden durch EOMAP Satellitenfernerkundungsprodukte für den Bodensee und eine Reihe kleiner Seen in Baden-Württemberg zur Verfügung gestellt. Validationsuntersuchungen anhand von HPLC-Summenschöpferproben für Chlorophyll a-Gehalte zeigen für die Jahre 2003-2011 eine gute Übereinstimmung der aus Satellitendaten abgeleiteten Chlorophyll a-Werte mit den Ergebnisse der HPLC-Analysen.

Für eine Reihe kleiner Seen wurden auf hochauflösenden Satellitenscannern beruhende Abschätzungen der Summe organischer Absorber (SOA) und darauf basierend Abschätzungen der maximal im Gewässer auftretenden Chlorophyll a-Werte Chl-a,max vorgenommen und mit Ergebnissen der in situ Messungen und HPLC-Analysen verglichen.

Für eine Reihe von Gewässern unterschiedlicher Ausdehnung und unterschiedlichen Eutrophierungsgrades konnte eine sehr gute Übereinstimmung der mittleren Werte registriert werden und kann die verwendete Methodik der Satellitenfernerkundung robuste Abschätzungen der maximalen Chlorophyll a-Werte liefern. Bei Gelbstoff-dominierten Gewässern liegt wird Chlorophyll dabei bei gleichzeitigem Vorhandensein von partikulären Materialien noch unterschätzt, wenn die Background-Absorption nicht abgezogen wird. Für einige kalkgetriebene Gewässertypen müssen erhöhte Gesamtabsorptionswerte noch besser verstanden werden.

Messungen mit der in situ FluoroProbe-Sonde (BBE Moldaenke) zeigen unter bestimmten Umweltbedingungen eine hohe zeitliche wie räumliche Variabilität der gemessenen Algenklassen entlang von Horizontaltransekten. Mit den vorgestellten Satz von Parametern, die mit geostatistischen und signalanalytischen Methoden aus den fluoreszenzoptischen Transektenmessungen berechnet werden, ist es möglich, eine quantitative und qualitative Bewertung und Charakterisierung der Patchiness der Verteilungen verschiedener Algenklassen im Bodensee vorzunehmen. Es können Informationen über die Struktur und die Persistenzskalen der Algenverteilungen abgeleitet werden und darauf basierend auch Aussagen zur Repräsentativität von Messungen getroffen werden. Die so bestimmten Eigenschaften können in einem Vektor zur Charakterisierung der Algenverteilung (patchiness state vector psv) zusammengefasst werden. Eine Übertragung des Vorgehens auf Satellitenbilder ist mit Modifikationen der angewendeten Methoden möglich.

LIMNISCHE SEDIMENTBILDUNG

KLEEBERG, A.: Ursachen einer periodischen Mangan-Akkumulation in Sedimenten

ROTHE, M., A. KLEEBERG & M. HUPFER: Authigene Vivianitbildung als Folge einer Fällung mit Eisen

Ursachen einer periodischen Mangan-Akkumulation in Sedimenten

Andreas Kleeberg

Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB), Chemische Analytik und Biogeochemie, Müggelseedamm 301, 12587 Berlin; gegenwärtige Adresse: Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V., Eberswalder Straße 84, 15374 Müncheberg, kleeberg@zalf.de

Keywords: Stechlinsee, Kernstratigraphie, Mangan, Mineralbildung, Ca-Rhodochrosit

Einleitung

Die vertikale Verteilung von Elementen und deren mineralische Phasen werden oft zur Rekonstruktion und Interpretation sich verändernder Umweltbedingungen während der Sedimentbildung in Seen herangezogen. Mangan (Mn) ist ein essentieller Mikronährstoff für das Phytoplankton (Davidson & Marchant 1987, Fraustro da Silva & Williams 1991). Demzufolge könnte eine Zu- oder Abnahme in der Mn-Verteilung im Sediment Veränderungen in der Phytoplankton-Gemeinschaft indizieren. Mangan ist redoxsensitiv (z. B. Hongve 1997, Dellwig et al. 2007) und wird deshalb zur Rekonstruktion sich verändernder O₂-Bedingungen im Wasserkörper herangezogen. Mangan beeinflusst die Kreisläufe von Spurenelementen durch Mitfällungen, das sog. Scavenging (Feely et al. 1983, Koschinsky et al. 2003). So könnten beispielsweise veränderte Sedimentationsbedingungen im Gewässer abgeleitet werden. Mangan (Mn²⁺) ist durch seine langsame Oxidation zu Mn⁴⁺ mobil (z. B. Davison 1993, Hongve 2003) und indiziert demzufolge veränderte hydrologische Bedingungen. Vorliegender Beitrag untersucht die rezente Mn-Verteilung in einem Sedimentkern aus dem Stechlinsee (Brandenburg) und diskutiert diese im Zusammenhang mit den gegenwärtigen Eutrophierungstendenzen des Sees.

Material und Methoden

Untersuchungsgewässer

Der Stechlinsee liegt ca. 75 km nördlich von Berlin im NW Brandenburgs (N 53°, 100°; O 13°, 020°). Der See hat eine Fläche von 4,2 km², ein Volumen von 98,7 Mio. m³ und eine maximale Wassertiefe von 69,5 m sowie eine mittlere Tiefe von 23,2 m (Koschel & Adams 2003). Der Stechlin liegt innerhalb eines 1938 begründeten, ca. 9.000 ha großen Naturschutzgebietes, eines der ältesten in Deutschland. Als einer der wenigen Klarwasserseen im NO Deutschlands wies er zwischen 1970 und 2010 eine mittlere Sichttiefe von 7,8 m auf (Kirillin et al. 2013). Die Trophie des Sees verschob sich in der letzten Dekade von ursprünglich oligotroph zu oligotroph bis mesotroph (Üveges et al. 2012). Die theoretische Wasseraufenthaltszeit des Stechlins ist > 40 Jahre (Holzbecher et al. 1999).

Sedimentbeprobung und -stratigraphie

An der tiefsten Stelle des Sees wurde am 30.10.2010 ein ungestörter, 65 cm langer Sedimentkern mit Hilfe eines Sedimentstechers (ø 6 cm; Fa. UWITEC, Österreich) genommen. Vor der Probenahme wurde das verwendete PVC-Rohr längs halbiert und mit Klebeband wieder zusammengeklebt. Nach der Probenahme wurde das über dem Kern stehende Wasser mit einem Schlauch abgezogen. Zur Stabilisierung des wässrigen Kerns wurde von oben bis zur Sedimentoberfläche und von

unten bis zum Kernende eine Scheibe Blumensteckmasse in das Rohr gedrückt. Danach wurde der Kern waagerecht gelegt, das Klebeband längs aufgeschnitten und der Kern mit Hilfe eines dünnen Bleches in zwei Hälften geteilt. Ein solcher Halbkern wurde zur Bestimmung der vertikalen Verteilung des Mn und des Zinks (Zn) mit Röntgenfluoreszens-Spektroskopie (μ XRF; Croudace et al. 2006) verwendet. Die Verteilung wurde mit einem ITRAX Core Scanner in 500 μ m Auflösung bestimmt.

Ergebnisse und Diskussion

Die vertikale Verteilung des Zn (Abb. 1a) wurde zur Altersbestimmung des Sedimentkerns herangezogen. Nach einer langen Phase einer gleichmäßigen Zn-Akkumulation nimmt die Zn-Konzentration deutlich zu und danach zur Sedimentoberfläche wieder deutlich ab. Dieser Konzentrationsverlauf wird dem Betrieb des Atomkraftwerkes (AKW) Rheinsberg zugeordnet. Das AKW wurde 1966 in Betrieb genommen und 1990 stillgelegt. Aus dem dazugehörigen Sedimenthorizont von 40 mm und der Dauer des AKW-Betriebes von 24 Jahren lassen sich Sedimentzuwachsraten von 1,7 mm a⁻¹ (1966-1990) und von 2,7 mm a⁻¹ (1990-2010) berechnen. Diese Raten liegen zwischen der ursprünglichen Rate von 0,5 mm a⁻¹ (Laacher See Tephra; Röper & Schwarz 2003), denen von 1,2 mm a⁻¹ (1986-1994) und 1,7 mm a⁻¹ (1963-1986) (134/137 Cs; Casper 1994) sowie der von 3,8 mm a⁻¹ (2009-2010), die über die Sedimentationsrate (Fallen; Hupfer unveröff.) berechnet wurde. Aufgrund des lateralen Eintrags (Makrophytenrückgang?, Resuspension?) von im Mittel 17% (max. 70%) ist diese Rate gegenüber den anderen erhöht. Nach der über das Zn errechneten Rate, eine gleichmäßige Sedimentakkumulation vorausgesetzt, entspricht der tiefste Sedimenthorizont ungefähr dem Jahr 1640 bzw. umspannt das 625 mm lange Profil einen Zeitraum von ca. 370 Jahren.

Das Vertikalprofil des Mn weist etwa alle 60 bis 70 Jahre ein Maximum auf (Abb. 1b). Eine zur Sedimentoberfläche eines Sees ansteigende Mn-Konzentration wird zumeist, in Verbindung mit der

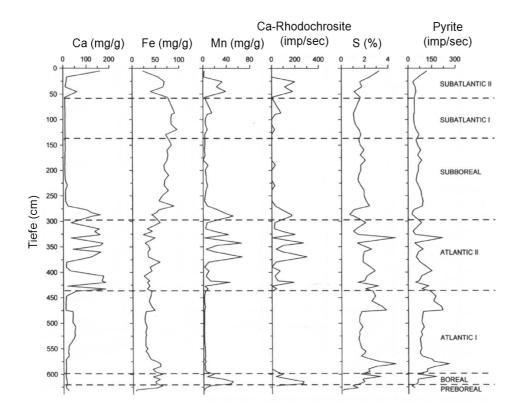



Abb. 1: Vertikale Verteilung von a) Zink (Zn) und b) Mangan (Mn) im Sediment des Stechlinsees. Der Kern wurde im Oktober 2010 genommen. Die Intensität der gemessenen Röntgenfluoreszens (counts) entspricht einer relativen "Konzentration" des ieweiligen Elements.

Redoxsensitivität des Mn, mit einer Verschlechterung der O₂-Bedingungen im Tiefenwasser bzw. in Sedimentnähe erklärt (Davison 1993, Hongve 2003). Eine periodische, längerfristige Abnahme der O₂-Konzentration alle 60 bis 70 Jahre, insbesondere im vormals oligotrophen See, erscheint unwahrscheinlich. Lediglich die, etwa seit 1980 einsetzende, Zunahme der Mn-Konzentration zur

Sedimentoberfläche kann mit einer sich verringernden O₂-Versorgung der Sedimentoberfläche erklärt werden.

Die periodische Mn-Akkumulation (Abb. 1b) ist offensichtlich das Ergebnis der Rhodochrosit-Bildung unter wechselnden hydrologischen Bedingungen, die mit veränderten Eintrags- und Sedimentationsbedingungen im Stechlin einhergehen könnten. So kommt Mn in mineralischer Form als Mn-Karbonat, z. B. als Ca-reiches Rhodochrosit vor, das bereits von Röper & Schwarz (2003) für den Stechlin nachgewiesen werden konnte (Abb. 2).

Abb. 2: Vertikale Verteilung der Elemente Ca, Fe, Mn und S sowie die der Minerale Ca-Rhodochrosit (Ca-MnCO₃) und Pyrit (FeS₂) im Sediment des Stechlins (verändert nach Röper **Schwarz** 2003). Die Minerale wurden mit Röntgendiffraktometrie (Impulse pro kunde) bestimmt.

Beim Ca-Rhodochrosit handelt es sich um eine mikritische Bildung, d. h. eine Mineralbildung unter den Bedingungen eines verfestigten Kalkschlamms bei entsprechendem hydrostatischem Druck. Untersuchungen von Sedimenten des Tegeler Sees (Berlin) indizieren, dass große Wassertiefen für eine Mn-Anreicherung und Ca-Rhodochrositbildung notwendig sind. Die extreme Mn-Anreicherung im Tegeler See (bis 172 mg g⁻¹) begann kurz nach der Bildung von laminierten Sedimenten im Alleröd (10.000 bis 8.800 v. Chr.) bei einer Wassertiefe von 45 m und endete im terminalen Boreal (8.690 bis 7.270 v. Chr.) bei einer Wassertiefe von 37 m (Röper & Schwarz 2003).

Wie und unter welchen Einflussbedingungen die Ca-Rhodochrositbildung im Stechlinsee ablaufen könnte ist in einem konzeptionellen Modell zusammengefasst (Abb. 3). Längerfristige, d. h. über Dekaden ablaufende hydrologische Veränderungen im Einzugsgebiet des Sees könnten zu einem veränderten Grundwasserzustrom führen. Diese Veränderungen gehen i. d. R., zunächst unbemerkt, mit veränderten Einträgen von Stoffen (inkl. Mn, Ca) einher. Der allochthone Eintrag und die autochthone Bildung organischen Materials (OM) durch eine erhöhte (?) Produktion begünstigt zum einen die Ausfällung von Kalziumkarbonat (CaCO₃) und zum anderen die Zehrung von gelöstem Sauerstoff (O₂) im Tiefenwasser. Eine verringerte O₂-Konzentration wiederum erhöht die redoxkontrollierte Mobilität des Mn ("manganous wheel" Davison 1993) und eine Akkumulation an der Sediment/Wasser-Kontaktzone. Das an der Sedimentoberfläche abgelagerte CaCO₃ wird durch Mineralisierungsprozesse (CO₂ Bildung und Verringerung des pH-Wertes) teilweise aufgelöst und

das HCO₃ bzw. CO₃² kann mit dem Mn²⁺ reagieren. Da die Löslichkeit von MnCO₃ geringer ist als die von CaCO₃, kann die Bildung von Ca-Rhodochrosit unmittelbar an der Sediment/Wasser-Kontaktzone ablaufen (Neumann et al. 2002) an der die Mn²⁺-Konzentration am höchsten ist. Der für die mikritische Bildung des Minerals offensichtlich notwendige hydrostatische Druck (> 4,7 atm) wird im Stechlin erreicht. Nach diesem Faktorengefüge ist die Bildung von Ca-Rhodochrosit theoretisch gegenwärtig möglich, beschränkt sich jedoch auf eine Fläche von nur ca. 16% der Seefläche (Wassertiefe 40 m).

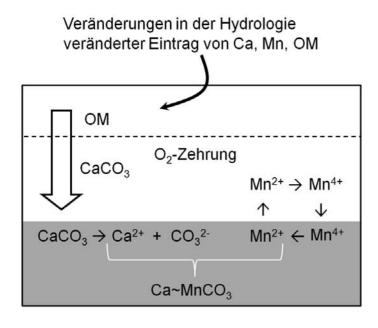


Abb. 3: Konzeptionelles Modell der Bildung von Ca-Rhodochrosit (Ca~MnCO₃) im Stechlinsee. Der Pfeil repräsentiert die Sedimentation organischen Materials (OM) und die Ausfällung von Kalziumkarbonat. Bei Abwesenheit von O₂ im Sediment wird Mn⁴⁺ zu Mn²⁺ reduziert; Mn²⁺ diffundiert ins überstehende Wasser und wird in Anwesenheit von O₂ wieder zu Mn⁴⁺ oxidiert.

Schlussfolgerungen

Als Ursachen für die periodischen Phasen (60 - 70 a) einer Mn-Akkumulation im Stechlin kommen veränderte hydrologische Bedingungen bzw. zunehmende Einträge aus dem Einzugsgebiet über das Grundwasser in der Vergangenheit in Frage. Als Plausibilitätskontrolle bietet sich die Prüfung der Synchronität der Ca-Konzentration in der Wassersäule und des CaCO₃-Gehaltes im Sediment an. Für die Mn-Akkumulation an der Sedimentoberfläche sind offensichtlich veränderte Redoxbedingungen verantwortlich. Der Stechlinsee befindet sich aktuell nicht im Gleichgewicht. Als Ursachen der erhöhten Sedimentzuwachsrate bei 68 m müssen seeinterne Umlagerungen, z. B. durch eine veränderte Makrophytenstruktur, geprüft werden. Eine aktuelle Datierung (^{134/137}Cs, ²¹⁰Pb) erscheint sinnvoll.

Danksagung

Ohne die vielfältige Unterstützung verschiedener Personen bzw. Einrichtungen wäre die vorliegende Arbeit nicht zustande gekommen. Sylvia Jordan und Michael Sachtleben (IGB, Neuglobsow) halfen bei der Probenahme. Sabine Stahl (Univ. Bremen, Geopolar) hat die μ XRF-Messungen durchgeführt. Herzlichen Dank.

Literatur

- Casper, P. (1994): Die Cäsium-Datierung von Sedimenten unterschiedlicher mikrobieller Aktivität. Deutsche Gesellschaft für Limnologie. Erweiterte Zusammenfassungen der Jahrestagung 1994 in Hamburg, 386-389.
- Croudace, I.W., Rindby, A., Rothwell, R. G. (2006): ITRAX: description and evaluation of a new X-ray core scanner. In: New Ways of Looking at Sediment Cores and Core Data (ed. Rothwell, R. G.). Geological Society, London, Special Publications 267, 51-63.
- Davison, W. (1993): Iron and manganese in lakes. Earth Sc. Reviews 34:119-163.
- Davidson, A. D., Marchant, H. J. (1987): Binding of manganese by antarctic *Phaeocystis pouchetti* and the role of bacteria in its release. Mar. Biol. 95: 481-487.
- Feely, R. A., Massoth, G. J., Paulson, A. J., Gendron, J. F. (1983): Possible evidence for enrichment of traceelements in the hydrous manganese oxide phases of suspended matter from an urbanized embayment. Estuar. Coast. Shelf Sc. 17: 693-708.
- Fraustro da Silva, J. J. R., Williams, R. J. P. (1991): The biological chemistry of the elements/The inorganic chemistry of life. Clarendon Press, Oxford.
- Dellwig, O., Bosselmann, K., Kölsch, S., Hentscher, M., Hinrichs, J., Böttcher, M. E., Reuter, R., Brumsack, H.-J. (2007): Sources and fatwe of manganese in a tidal basin of the German Wadden Sea. J. Sea Res. 57: 1-18.
- Holzbecher, E., Nützmann, G., Ginzel, G. (1999): Water and component mass balances in the catchment of Lake Stechlin. Integrated methods in catchment hydrology tracer remote sensing and new hydrometric techniques. In: Proc: of IUGG 99 Symposium, Birmingham. IAHS Publ. No. 258, pp. 37–44
- Hongve, D. (1997): Cycling of iron, manganese, and phosphate in a meromictic lake. Limnol. Oceanogr. 42(4): 635-647.
- Hongve, D. (2003): Chemical stratigraphy of recent sediments from a depth gradient in a meromictic lake, Nordbytjernet, SE Norway, in relation to variable external loading and sedimentary fluxes. J. Paleolimnology 30: 75-93.
- Kirillin, G., Shatwell, T., Kasprzak, P. (2013): Consequences of thermal pollution from a nuclear plant on lake temperature and mixing regime. J. Hydrol. 496: 47-56.
- Koschel, R., Adams, D. D. (2003): An approach to understanding a temperate oligotrophic lowland lake (Lake Stechlin, Germany). Arch. Hydrobiol. Spec. Issues Adv. Limnol. 58: 1-19.
- Koschinsky, A., Winkler, A., Fritsche, U. (2003): Importance of different types of marine particles for the scavenging of heavy metals in the deep-sea bottom water. Appl. Geochem. 18: 693-710.
- Neumann, T., Heiser, U., Leosson, M. A., Kersten, M. (2002): Early diagenetic processes during Mn-carbonate formation: Evidence from the isotopic composition of authigenic Ca-rhodochrosite of the Baltic Sea. Geochim. Cosmochim. Acta 66(5): 867-879.
- Röper, H.-P., Schwarz, S. (2003): Late Pleistocene and Holocene sediment characteristics of Lake Stechlin, with particular reference to manganese enrichment. Arch. Hydrobiol. Spec. Iss. Advanc. Limnol. 58: 247-279.
- Üveges, V., Tapolczai, K., Krienitz, L., Padisák, J. (2012): Photosynthetic characteristics and physiological plasticity of an *Aphanizomenon flos-aquae* (Cyanobacteria, Nostocaceae) winter bloom in a deep oligo-mesotrophic lake (Lake Stechlin, Germany). Hydrobiologia 698: 263-272.

Authigene Vivianitbildung als Folge einer Fällung mit Eisen

Matthias Rothe¹, Andreas Kleeberg² & Michael Hupfer¹

Keywords: Sediment, Phosphor, Eisen, Vivianit

Einleitung

Das Element Phosphor (P) nimmt eine zentrale Stellung im biogeochemischen Stoffkreislauf von terrestrischen als auch aquatischen Ökosystemen ein. Phosphor ist eines der potentiell limitierenden Nährstoffe und hat damit entscheidenden Einfluss auf die Primärproduktion und den trophischen Status aquatischer Ökosysteme. Die Umsatzprozesse, die mit P und seinen Verbindungen einhergehen, zu verstehen, ist seit Jahrzehnten Bestandteil der limnologischen Forschung.

Vivianit ist ein Eisen(II)-Phosphatmineral (Fe₃(PO₄)₂ 8 H₂O) und ein mögliches Produkt dieser Umsatzprozesse. Das Mineral bildet sich unter Sauerstoffabschluss in wassergesättigten Böden, Mooren und Sedimenten, sofern die Konzentrationen an Fe²⁺- sowie PO₄³⁻-Ionen so hoch sind, dass Kristalle aus dem Porenwasser ausfallen können (Emerson et al. 1978; Berner 1981; Postma 1981) Diese als authigen bezeichnete Bildung von Vivianit ist von ökologischer Relevanz, da der im Kristallgitter des Minerals eingebaute P nicht mobilisierbar ist und somit dem gewässerinternen P-Kreislauf entzogen wird. Sobald Vivianit mit Luftsauerstoff in Kontakt kommt, verfärbt sich das ursprünglich farblose Mineral intensiv blau.

Obwohl Gleichgewichtsberechnungen das Auftreten von Vivianit in Mooren und Sedimenten häufig vorhersagen, sind direkte Vivianitfunde wenig dokumentiert (Hearn et al. 1983; Manning et al. 1991; Fagel et al. 2005; Taylor et al. 2007). Dies ist eine Ursache, warum wenig über den Bildungsprozess des Minerals bekannt ist. Vermeintlich günstige Bildungsbedingungen in bestimmten Sedimentschichten können oft nicht mit entsprechenden Mineralfunden belegt werden (z. B. März et al. 2008; Slomp et al. 2013).

In der vorliegenden Arbeit werden die Ergebnisse der Untersuchung zu Bildungsbedingungen und Auftreten von Vivianit in einem Fe- und P- reichem Sediment vorgestellt.

Material und Methoden

Untersuchungsgebiet

Studienobjekt für die Untersuchung der Vivianitbildung ist das Sediment des Groß-Glienicker Sees (Berlin). Dieser See wurde im Jahr 1992 mit Eisenoxid behandelt und weist auf Grund der Redoxsensitivität des Eisens bis heute hohe Fe²⁺- Konzentrationen im Porenwasser auf (5-10 mg L⁻¹). Zudem liegen die SRP-Konzentrationen bei 0,8-1,2 mg L⁻¹. Darüberhinaus zeigen Untersuchungen zum P-Gehalt des Sediments einen sprunghaften Anstieg ab dem Zeitpunkt der Eisenoxid-Zugabe (Kleeberg et al. 2012).

¹ Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB), Abteilung chemische Analytik und Biogeochemie, Müggelseedamm 301, 12587 Berlin, rothe@igb-berlin.de, hupfer@igb-berlin.de; ² Leibniz-Zentrum für Agrarland-schaftsforschung (ZALF) e.V.; Eberswalder Straße 84, 15374 Müncheberg, kleeberg@zalf.de

Geochemische Gleichgewichtsberechnungen

Zur Untersuchung der geochemischen Bedingungen im Porenwasser des Sediments wurden mit Hilfe von PhreeqC (Parkhurst et al. 1999) Speziierungsrechnungen durchgeführt. Diese Berechnungen basieren auf den Ergebnissen verschiedener Porenwasseranalysen und ermöglichen die Ermittlung des Sättigungsindex SI für Vivianit und damit einer Abschätzung der Bildungsbedingungen im Sediment für das betrachtete Mineral. Die verwendete Löslichkeitskonstante für Vivianit ist $\log K_L = -35.767$ (Al-Borno et al. 1994).

Es gilt
$$Fe_8[(PO]_4)28H2O \leftarrow \xrightarrow{R_L} 3Fe^{2+} + 2(PO_4)^{2-} + 8H2O$$

$$SI = log \left[\frac{[(a]_{Fe^{2+}})^8[(a]_{PO_4}^{-2-})^2}{K_L} \right]$$

mit a_{Fe}^{2+} und a_{PO4}^{3-} die Aktivität der Fe $^{2+}$ - und PO_4^{3-} -Ionen.

Sediment proben

Zur Nachweis von Vivianit wurden 5 Sedimentkerne von 35 cm Länge mit Hilfe eines Sedimentstechers (Ø 6 cm, Uwitec) von der tiefsten Stelle des Sees (10 m Wassertiefe) entnommen und 2 h danach im Labor geschnitten und für mindestens 72 h gefriergetrocknet. Die horizontale Auflösung der geschnittenen Teilprobenproben beträgt 2 cm. Zur Analyse der mineralischen Bestandteile der Proben kam Röntgen(pulver)diffraktometrie (engl. XRD) zum Einsatz. Die Bestimmung der elementaren Zusammensetzung von Sedimentproben erfolgte nach heißem Königswasseraufschluss mittels Optischer Emissionsspektrometrie mit induktiv gekoppeltem Plasma (ICP-OES) sowie Atomabsorptionsspektroskopie (AAS).

Ergebnisse und Diskussion

Die geochemischen Gleichgewichtsberechnungen zeigen für alle untersuchten Tiefenschichten des Sediments (0–22,5 cm) eine Übersättigung im Porenwasser hinsichtlich des Minerals Vivianit (Abb. 1). Die ermittelten SI liegen zwischen 2 und 3,5, was einer 100 bis 1.000 fachen Übersättigung entspricht. Dieses Ergebnis zeigt, dass aus thermodynamischen Gesichtspunkten eine Bildung von Vivianit im Sediment möglich ist. Es gibt darüberhinaus aber auch Auskunft, dass die Bildung des Minerals kinetisch gehemmt ist, da nur so die hohen Übersättigungen erklärbar sind. Gleichzeitig ergibt die geochemische Berechnung hinsichtlich des Eisencarbonats Siderit (FeCO₃), dessen Bildung potentiell in Konkurrenz zur Vivianitbildung steht, eine fast im Gleichgewicht befindliche Sättigungssituation (Walpersdorf et al. 2013). Des Weiteren sind die gemessenen Sulfidkonzentrationen unterhalb der Nachweisgrenze, was darauf schließen lässt, dass alle gebildeten freien Sulfidionen bereits mit Metallionen (vor allem Fe²⁺) reagiert haben. Es gibt demnach einen Überschuss an Fe²⁺ im Verhältnis zu den reaktiven Sulfiden, was eine Vivianitbildung wahrscheinlicher macht.

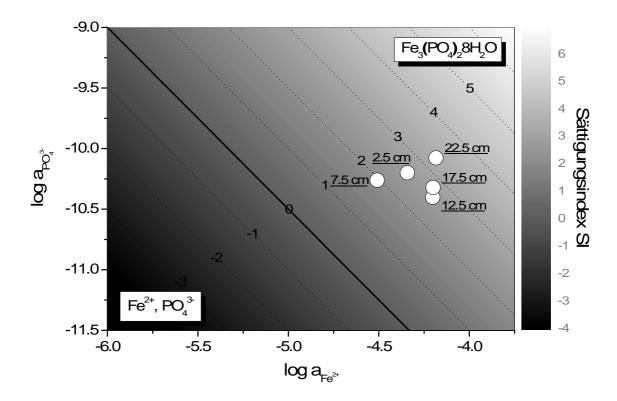


Abb. 1: Berechneter Sättigungsindex SI für Vivianit in Abhängigkeit verschiedene Sedimenttiefen.

Um zu überprüfen, ob die geochemischen Berechnungen mit Mineralfunden im Sediment bestätigt werden können, wurden Röntgendiffraktogramme des gefriergetrockneten Sedimentmaterials aufgenommen. Anhand dieser Messungen lässt sich in unbehandelten Sedimentproben kein Vivianit nachweisen. Dies kann zunächst daran liegen, dass kein Vivianit in der Probe enthalten ist. Negative Befunde können aber auch auftreten (z. B. März et al. (2008)), da sich die Identifikation von Sedimentbestandteilen im Röntgendiffraktogramm ausschließlich auf kristalline Bestandteile beschränkt und somit amorphe Vivianitpartikel und -vorstufen nicht identifizierbar sind. Zudem können vorhandene Vivianitkristalle durch den Kontakt mit Sauerstoff einem Alterungsprozess unterworfen sein, der eine nachfolgende Identifikation nicht mehr zulässt. Außerdem kann der Gehalt an Vivianit im Sediment möglicherweise zu gering sein (< 1 Gew.-%), um im Röntgendiffraktometer detektiert zu werden.

Um diese Fragen zu klären, wurden die Sedimentproben mit Hilfe einer Dichtelösung in eine schwere ($\rho > 2,3$ g cm⁻³) und eine leichte ($\rho < 2,3$ g cm⁻³) Fraktion getrennt. Da Vivianit eine Dichte von 2,5-2,6 g cm⁻³ besitzt, ist mit einem Vorkommen nur in der schweren Sedimentfraktion zu rechnen. Eine nachfolgende visuelle Analyse der getrennten Fraktionen zeigte intensiv blau gefärbte Partikel, die fast ausschließlich in der schweren Fraktion anzutreffen waren. Die Aufnahme eines Röntgendiffraktogramms dieser Probe ergab den eindeutigen Nachweis von Vivianit (Abb. 2). Die Anreicherung der Sedimentprobe mit Vivianit und die intensiv blaue Färbung des Minerals erlaubten es zudem, einzelne Mineralpartikel genauer zu untersuchen. In Abb. 3 ist ein rasterelektronenmikroskopisches Bild eines Vivianitpartikels abgebildet. Charakteristisch hervor tritt zunächst die mineralische Struktur des sphärischen Partikels. Zudem weist das Mineral eine eingeschlossene Kieselalgenschale auf. Sowohl die scharf abgegrenzten nadel- und plattenförmigen Kristallite als auch der biologische Einschluss sind ein Indiz für die authigene Bildung des Minerals im Sediment. Die Bestimmung der elementaren Zusammensetzung dieses Partikels mit Hilfe von energiedispersi-

ver Röntgenspektroskopie (SEM-EDX) ergab ein molares Fe/P-Verhältnis von 1,48. Damit entspricht das Messergebnis fast genau dem idealen Fe/P-Verhältnis von Vivianit mit Fe/P = 1,5. Die Abweichungen liegen im Bereich der Messunsicherheit dieser semi-quantitativen Analysemethode.

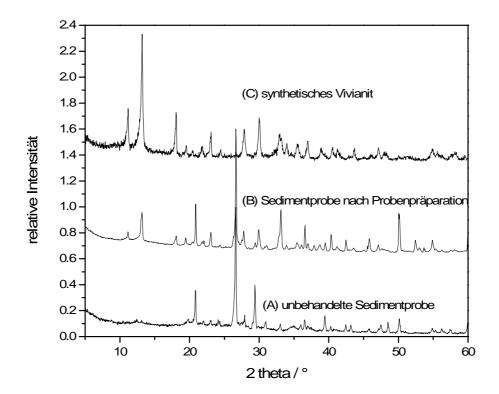


Abb. 2: Röntgendiffraktogramm einer (A) unbehandelten und (B) nach Dichte getrennten Sedimentprobe. (C) zeigt das Röntgendiffraktogramm von synthetischem Vivianit.

Der Ansatz der Trennung des Sediments nach Dichte und die daraufhin stattfindenden Anreicherung des Sediments mit Vivianit, eröffnet die Möglichkeit, eine quantitative Bestimmung der in Form von Vivianit gebundenen P-Menge im Sediment vorzunehmen. Die Ergebnisse aus dieser Untersuchung zeigen, dass in den oberen 20 cm des Sediments $20,6 \pm 4,4\%$ (i = 5) des gesamten P in Form von Vivianit vorliegen. Auch wenn nicht ausgeschlossen werden kann, dass die mit Vivianit angereicherte Sedimentfraktion noch andere P-haltige Bestandteile enthält, ist eine signifikante P-Menge in Form von Vivianit im Sediment gespeichert.

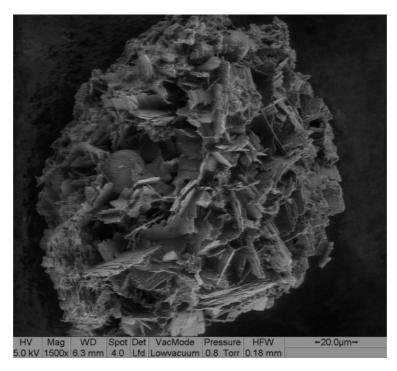


Abb.3: Rasterelektronenmikroskopische Aufnahme eines Vivianitpartikels (Groß-Glienicker See)

Zusammenfassung

Geochemische Gleichgewichtsberechnungen zeigen eine Übersättigung hinsichtlich des Eisen(II)-Phosphatminerals Vivianit in den oberen 22,5 cm des Sediments des Groß-Glienicker Sees. Es herrschen demnach günstige Bedingungen für die Bildung von Vivianit im Sediment. Wir können diese Berechnungen durch die direkte Identifikation von Vivianitmineralen (XRD) bestätigen. Eine Identifikation ist jedoch nur nach einer Anreicherung von Vivianitpartikeln in der Sedimentmatrix gegeben. Die Beschaffenheit der Mineralpartikel sowie deren Vorkommen auch in den oberen 2 cm des Sediments belegen einen aktiven Bildungsprozess. Ein signifikanter Anteil (20 %) des gesamten P im Sediment liegt dabei gebunden in Form von Vivianit vor. Die Ergebnisse zeigen, dass der Einsatz von Eisen in der Seenrestaurierung eine langfristige Bindung von P zur Folge haben kann.

Danksagung

Für die Hilfe bei den Probenahmen gilt unser Dank Jonas Keitel, Max Lau und Sylvia Jordan sowie dem Chemielabor des IGB für die Durchführung chemischer Analysen. Ganz besonderer Dank gebührt Susann Weichold, Ingrid Zenke sowie Dr. Michaela Eder vom Max-Planck Institut für Kolloid- und Grenzflächenforschung, Abteilung Biomaterialien für die Unterstützung bei den XRD sowie SEM-EDX Messungen. Die Untersuchungen werden im Rahmen des DFG-Projekts "RedoxPhos" (HU 740/5-1) durchgeführt.

Literatur

Al-Borno, A. & M. B. Tomson (1994). The temperature dependence of the solubility product constant of vivianite. Geochimica et Cosmochimica Acta 58(24): 5373-5378.

Berner, R. A. (1981). A new geochemical classification of sedimentary environments. Journal of Sedimentary Research 51(2): 359-365.

- Emerson, S. & G. Widmer (1978). Early diagenesis in anaerobic lake sediments II. Thermodynamic and kinetic factors controlling the formation of iron phosphate. Geochimica et Cosmochimica Acta 42(9): 1307-1316
- Fagel, N., L. Alleman, L. Granina, F. Hatert, E. Thamo-Bozso, R. Cloots & L. André (2005). Vivianite formation and distribution in Lake Baikal sediments. Global and Planetary Change 46(1-4): 315-336.
- Hearn, P. P., D. L. Parkhurst & E. Callender (1983). Authigenic Vivianite In Potomac River Sediments Control By Ferric Oxy-hydroxides. Journal of Sedimentary Petrology 53(1): 165-177.
- Kleeberg, A., A. Köhler & M. Hupfer (2012). How effectively does a single or continuous iron supply affect the phosphorus budget of aerated lakes? Journal of Soils and Sediments 12(10): 1593-1603.
- Manning, P. G., T. P. Murphy & E. E. Prepas (1991). Intensive formation of vivianite in the bottom sediments of mesotrophic Narrow Lake, Alberta. The Canadian Mineralogist 29(1): 77-85.
- März, C., J. Hoffmann, U. Bleil, G. J. de Lange & S. Kasten (2008). Diagenetic changes of magnetic and geochemical signals by anaerobic methane oxidation in sediments of the Zambezi deep-sea fan (SW Indian Ocean). Marine Geology 255: 118 130.
- Parkhurst, D. L., C. Appelo & others (1999). User's guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations.
- Postma, D. (1981). Formation of siderite and vivianite and the pore-water composition of a recent bog sediment in Denmark. Chemical Geology 31: 225-244.
- Slomp, C. P., H. P. Mort, T. Jilbert, D. C. Reed, B. G. Gustafsson & M. Wolthers (2013). Coupled Dynamics of Iron and Phosphorus in Sediments of an Oligotrophic Coastal Basin and the Impact of Anaerobic Oxidation of Methane. PLoS ONE 8(4).
- Taylor, K. G. & S. Boult (2007). The role of grain dissolution and diagenetic mineral precipitation in the cycling of metals and phosphorus: A study of a contaminated urban freshwater sediment. Applied Geochemistry 22(7): 1344-1358.
- Walpersdorf, E., C. B. Koch, L. Heiberg, D. W. O'Connell, C. Kjaergaard & H. C. B. Hansen (2013). Does vivianite control phosphate solubility in anoxic meadow soils? Geoderma 193 194: 189 199.

BENTHOS/BENTHISCHE LEBENSGEMEINSCHAFTEN

CORNELIUS, A. & P. MARTIN: Ökotoxikologische Untersuchungen an Wassermilben (Hydrachnidia, Acari)

VOßKUHL, M. & E. KIEL: Auf dem Weg zu einer ökologischen Grabenunterhaltung in Norddeutschland!

Ökotoxikologische Untersuchungen an Wassermilben (Hydrachnidia, Acari)

Annika Cornelius¹ & Peter Martin ²

Christian-Albrechts-Universität zu Kiel, Zoologisches Institut, Abt. Limnologie, Am Botanischen Garten 1-9, 24118 Kiel, ¹ annika.cornelius@uni-rostock.de, ² pmartin@zoologie.uni-kiel.de

Keywords: Ökotoxikologie, Hydrachnidia, Roundup®LB Plus, Heptadecafluoroctansäure, Verhaltensauffälligkeiten

Einleitung

Die weltweit zunehmende Chemikalienproduktion führt dazu, dass das Gefahrenpotenzial dieser teils neuartigen Stoffe meist nur für Standard-Testorganismen bekannt ist (z. B. *Daphnia magna*, *D. pulex*). Eine Übertragung der Ergebnisse auf andere Taxa ist in der Regel nicht möglich (Fent 2003), zumal manche Gruppen sehr selten oder nie toxikologisch getestet wurden.

Die Wassermilben spielen in limnischen Habitaten als eine der artenreichsten Gruppen eine wichtige Rolle, da sie als Parasit und als Prädator die limnischen Populationsgemeinschaft von Crustaceen und Insekten regulieren können (Smith et al. 2009). Eine Sensitivität der Wassermilben gegenüber Gewässerverschmutzung und ihre Eignung als Indikatorgruppe ist aus Freilanduntersuchungen mehrfach belegt (z.B. Gerecke & Schwoerbel 1991, Dohet et al. 2008, Miccoli et al. 2013). Akute Toxizitätstest mit Wassermilben wurden jedoch bisher nur in wenigen Arbeiten durchgeführt (Nair 1981; Rousch et al. 1997; Yi et al. 2011). Somit ist es bisher weitgehend unklar, ob die Sensitivität der Wassermilben gegenüber Störungen indirekt (z.B. durch die Beeinflussung der Beute- und Wirtstaxa) oder direkt verursacht ist.

Aus diesem Grund wurden an drei Wassermilbenarten aus der Familie der Hygrobatidae ökotoxikologische Akuttests mit Roundup®LB Plus und Heptadecafluoroctansäure durchgeführt. Hierbei sollten verschiedene Fragestellungen untersucht werden.

- 1. Wie reagieren die untersuchten Wassermilben auf die beiden verwendeten Toxine Roundup®LB Plus (Glyphosat) und Heptadecafluoroctansäure? Kann man neben dem Tod auch subletale Verhaltensänderungen feststellen?
- 2. Gibt es Unterschiede in den beobachteten Reaktionen zwischen den einzelnen Stoffen und den verschiedenen Arten?
- 3. Entsprechen die Ergebnisse der Sensitivitätstests den Erwartungen hinsichtlich der Sensitivität der Arten aus Freilandbefunden?
- 4. Wie sensitiv sind Wassermilben im Vergleich mit anderen limnischen Organismengruppen gegenüber den Toxinen?
- 5. Welche Schlussfolgerungen können hinsichtlich der Eignung der Wassermilben für ökotoxikologische Tests gezogen werden und welche Perspektiven ergeben sich daraus?

Material und Methoden

Versuchsorganismen und -stoffe

Die drei untersuchten Arten (*Hygrobates fluviatilis* (Ström, 1768); *Atractides nodipalpis* (Thor, 1899); *Hygrobates setosus* Besseling, 1942) wurden ausgewählt, weil aus faunistischen Freilanduntersuchungen eine unterschiedliche Sensitivität gegenüber Schadstoffen festgestellt werden konnte. So wurde *H. fluviatilis* in verschiedenen Arbeiten als toleranteste Milbe gegenüber Abwasser detektiert (z.B. Bolle et al. 1976; Gerecke & Schwoerbel 1991). *Atractides nodipalpis* kommt auch noch in stark verschmutzen Gewässern vor (Gerecke & Schwoerbel 1991), wohingegen *H. setosus* in den genannten Arbeiten nicht als robust aufgefallen ist.

Die Tiere wurden in der Osterau nahe des Ortes Bimöhlen gefangen (Google Earth : 53°56'46.81"N, 10° 0'51.33"E), lebend ins Labor verbracht und bis zum Versuchsbeginn bei 12 ° C und einem Tag-Nachtrhythmus von 12 h mit Sauerstoffzufuhr gehältert.

Roundup®LB Plus (Hersteller: MONSANTO Europe S.A.) mit dem biologisch wirksamen Teil Glyphosat wird als Breitbandherbizid in den verschiedensten Bereichen eingesetzt. Es wurden in Studien verschiedene mutagene und zellstörende Wirkungen des Glyphosats auf Tiere nachgewiesen.

Heptadecafluoroctansäure (Sigma Aldrich) gehört zu den perfluorierten Tensiden (HFOS). Ihre Herstellung und Verwendung ist seit 2008 weitgehend verboten, da ihre Bioakkumulation sowohl im Labor (Martin et al. 2003) als auch im Freiland bei Fischen (Hoff et al. 2003) nachgewiesen ist. Die Relevanz des HFOS in der Umwelt, dessen akute Toxizität ebenfalls belegt ist (z. B. Colombo et al. 2008, Li 2008), ist durch seine hohe Resistenz gegenüber Abbau auch heutzutage gegeben.

Versuchsaufbau und -durchführung, Auswertung der Daten

Die Tiere wurden einzeln in 24er Gewebekulturplatten in je 2,5 ml Lösung pro Versuchstier bei einem 12/12 h Tag-Nacht-Rhythmus und einer Temperatur von 12 °C gehältert. Es wurden jeweils 35 Tiere pro Art mit einem Schadstoff getestet (6 verschiedene Konzentrationen und eine Kontrollgruppe).

Die Konzentrationen für Roundup®LB Plus waren (in Klammern entsprechende Konzentration von Roundup®LB Plus in ml/L): 3,75 (10,40), 7,50 (20,80), 14,94 (41,50), 29,88 (83,00), 74,70 (207,50), 149,40 (415,00) g/L Glyphosat. Für HFOS wurden (in Klammern entsprechende Konzentrationen von HFOS in ml/L) 39,10 mg/L (0,08), 156,40 mg/L (0,32), 312,80 mg/L (0,64), 625,60 mg/L (1,28), 1251,20 ml/L (2,56), 2502,40 mg/L (5,12) eingesetzt.

Die Tiere wurden einen Tag vor Versuchsbeginn in die Versuchsgefäße überführt und dort in 2,5 ml gefiltertem Leitungswasser gehältert. Das Pipettieren der Konzentrationen aus einer Stammlösung fand randomisiert statt. Die Versuchszeit betrug 96 h, die Tiere wurden alle 24 h auf ihre Vitalfunktionen bzw. auf ihr Verhalten hin überprüft. Da einige Tiere während der Versuchsdauer ein stark vom Normalverhalten abweichendes, kategoriesierbares Verhalten zeigten, wurde ein Katalog ihrer Verhaltensreaktionen erstellt, der hier aus Platzgründen nicht dargestellt werden kann. Die subletalen Verhaltensreaktionen wurden in der dargestellten Auswertung zusammengefasst. Wenn die Tiere sich nicht sichtbar bewegten, wurden sie vom Experimentator mit einer Pinzettenspitze berührt, um so eine Bewegungsreaktion hervorzurufen. Erfolgte diese auch nach einer Wiederholung nach 30 Minuten nicht, wurde das Tier als gestorben notiert. Es wurden zudem Foto- und Filmaufnahmen von den Tieren gemacht.

Die Berechnung der LC₅₀ Werte mit 95 % Konfidenzintervallen wurde mit dem Trimmed Spearman KarberTest in R (Version 2.15.1.) mit dem Package tsk durchgeführt.

Die hier vorgestellten Ergebnisse sind Teil einer Bachelorarbeit (Cornelius 2013).

Ergebnisse und Diskussion

Nach der Versuchsdauer von 96 h waren bei der Roundup®LB Plus-Versuchsreihe keine Unterschiede beim LC₅₀-Wert und der <u>Sterblichkeit</u> der drei Arten festzustellen (Tab. 1). Bei den Verhaltensreaktionen nach 96 h waren Unterschiede zu erkennen, *H. fluviatilis* wies die höchste Anzahl an Tieren auf, die subletal reagierten, *A. nodipalpis* die niedrigste. Da bei der Sterblichkeit und den LC₅₀-Werten keine Unterschiede erkennbar waren, konnte die angenommene Hypothese, dass *H. setosus* sensitiver als *H. fluviatilis* und *A. nodipalpis* reagiert, nicht bestätigt werden.

Tab. 1: Zusammenfassung der Ergebnisse für Roundup®LB Plus (RU) und HFOS.

	Sterblichkeit 96 h	LC ₅₀ bei 96 h	Verhaltensreaktionen nach 96 h
H. fluviatilis RU	42,9 %	65,5 g/L	70,0 %
A. nodipalpis RU	42,9 %	65,5 g/L	40,0 %
H. setosus RU	42,9 %	65,5 g/L	45,0 %
H. fluviatilis HFOS	68,5 %	78,2 mg/L	83,3 %
A. nodipalpis HFOS	68,5 %	93,0 mg/L	30,0 %
H. setosus HFOS	57,1 %	126,6 mg/L	85,7 %

Im Vergleich der Reaktionen aller Arten auf HFOS nach 96 h fiel auf, dass die Sterblichkeit von *H. fluviatilis* und *A. nodipalpis* gleich war und über der Sterblichkeit von *H. setosus* lag (Tab. 1). Beim LC₅₀-Wert kann man von *H. fluviatilis* über *A. nodipalpis* zu *H. setosus* ansteigende Werte erkennen. Während die Individuen der beiden *Hygrobates*-Arten einen hohen Anteil subletaler Verhaltensänderungen zeigten, war der Anteil für *A. nodipalpis* nur gering. Die angenommene Arbeitshypothese dieser Arbeit konnte nicht bestätigt werden, da im HFOS-Versuch *H. setosus* bei der Sterblichkeit und dem LC₅₀-Wert am wenigsten sensitiv reagierte.

In dieser Untersuchung konnten erstmals Ergebnisse für <u>LC₅₀-Werte</u> dieser Stoffe bei Hydrachnidia ermittelt werden. Das genutzte Versuchssetup erwies sich als sehr geeignet für ökotoxikologische Akuttest an dieser Tiergruppe. So konnte für alle Arten und jeden Stoff LC₅₀-Werte errechnet und kategorisierbare Verhaltensauffälligkeiten ermittelt werden. Die Werte für die Sterblichkeit der Tiere lagen für Roundup®LB Plus bei allen drei Arten bei 42,9 % (nach 96 h) und einem LC₅₀-Wert von 65,5 g/L (Tab.1). In diesem Versuchsteil ließen sich am Endzeitpunkt keine Unterschiede für die einzelnen Arten feststellen, somit hatte das Toxin also auf die drei Arten nach 96 Stunden vermutlich die gleiche Wirksamkeit. Unterschiede in den Reaktionen der Tiere wurden im zeitlichen Verlauf des Versuches deutlich: *Atractides nodipalpis* war am tolerantesten gegenüber Roundup®LB Plus und *H. fluviatilis* am sensitivsten.

Im Vergleich der Reaktionen im HFOS-Test sind deutlichere Unterschiede zwischen den Arten erkennbar. *Atractides nodipalpis* zeigte über den zeitlichen Verlauf hinweg die höchste Sensitivität und *H. setosus* die niedrigste. Nach 96 h zeigten weder die LC₅₀-Werte (78,2-126,6 mg/L) noch die Sterblichkeit der Tiere signifikante Unterschiede zwischen den Arten (Tab. 1).

Während der Versuchsdurchführung konnte bei den untersuchten Wassermilben neben dem Tod noch weitere Auswirkungen der Stoffe beobachtet werden. Bei allen drei Arten waren deutliche Bewegungs- und andere <u>Verhaltensauffälligkeiten</u> erkennbar, die auf einen bereits subletalen Einfluss der untersuchten Stoffe auf die Tiere schließen lassen. In den wenigen ökotoxikologischen Untersuchungen an Wassermilben wurden solche Beobachtungen nicht dokumentiert, obwohl sie ganz offenbar ein hohes Potential für weitergehende Untersuchungen haben. Ähnliche Verhaltens-

änderungen wie in der jetzigen Arbeit wurden von Schwoerbel (1959) für die physiologische Temperaturresistenz vermeintlich kaltpräferenter Arten festgestellt. Dort wurden drei Kategorien erstellt, welche als Indikatoren für physiologische Veränderungen angenommen wurden, die teils reversibel waren. Die in der vorliegenden Arbeit erzielten Verhaltenskategorien kann man somit gleichfalls als Indikatoren für erste subletale physiologische Toxin-Schädigungen heranziehen. 2011 untersuchten Yi et al. die Wirkung des Herbizids Fluridone auf Wassermilben und konnten ebenfalls Veränderungen gegenüber dem normalen Bewegungsverhalten der Tiere feststellen, ohne dass diese genauer dokumentiert und/oder differenziert worden wären. Es ist also anzunehmen, dass Verhaltensauffälligkeiten bei Wassermilben auf eine Beeinflussung durch abiotische Faktoren hinweisen.

In der vorliegenden Untersuchung konnte bei den erstellten Kategorien ebenfalls eine Abfolge der veränderten Verhaltensreaktionen der Tiere festgestellt werden. Die Tiere zeigten zuerst ein normales Bewegungsverhalten welches jedoch verlangsamt war, es folgten ein fehlender Fluchtreflex und eine Beinbewegung auf der ventralen Seite ohne Fortbewegung. In der darauf folgenden Phase lag das Tier auf seiner dorsalen Seite und die Beine zucken nur noch. In der letzten Phase war kaum noch ein zucken der Beine festzustellen, es glich mehr einem flimmern.

Es wurde a priori angenommen, dass *H. setosus* sensitiver reagiert als *H. fluviatilis* und *A. nodipalpis*, die häufig auch in verschmutzten Fließgewässern nachgewiesen wurden. Die Ergebnisse dieser Arbeit zeigen, dass alle Arten auf beide Toxine reagieren und neben dem Tod auch Auffälligkeiten im Verhalten der Tiere festzustellen sind, die eine Abstufung der subletalen Wirkung der Toxine ermöglichen. Die Auswirkungen der beiden getesteten Toxine sind somit offenbar nicht mit den "normalen" Verschmutzungsphänomenen im Freiland gleichzusetzen, für deren Auswirkungen auf die Zönosen klare Indizien vorliegen (Rundle & Hildrew 1990).

Beim Vergleich der Ergebnisse für Roundup®LB Plus mit Werten aus der Literatur für den Wasserfloh *Daphnia magna* (Mel'nichuk & Lokhanskaya 2007) und den Amphipoden *Gammarus pseudomenias* (Folmar 1979), fällt auf, dass die ermittelten Werte für Wassermilben deutlich höher liegen, z.B. um den Faktor 15.000 bei *G. pseudomenias*. Vergleicht man die ermittelten LC₅₀-Werte für HFOS für Vertreter anderer limnischer Tiergruppen, ist der Unterschied zu Literaturdaten deutlich geringer. Der LC₅₀-Wert der Planarie *Dugesia gonocephala* lag zum Beispiel ca. 4-fach niedriger (Georg 2013). Der Vergleich mit anderen limnischen Gruppen zeigt somit, dass die Wassermilben nach den Befunden der vorliegenden Arbeit deutlich robuster (Roundup®LB Plus) beziehungsweise etwas weniger (HFOS) sensitiv reagieren. Zusätzlich zeigte sich, dass subletale Wirkungen der Stoffe zu beobachten sind, welche in diesen Untersuchungen sowohl stoffabhängig als auch artspezifisch zu sein scheinen.

Schlussfolgerungen

Tendenziell entsprachen die relativ hohen letalen Konzentrationen in den Versuchen dem nicht sehr aussagekräftigen Bild in der Literatur. Wassermilben scheinen etwas weniger sensitiv zu reagieren als andere Tiergruppen. Allerdings erschweren methodische Unterschiede sowie die individuellen Wirkungen verschiedener Schadstoffe eine generelle Aussage. Für weitergehende Aussagen zur ökotoxikologischen Sensitivität der Wassermilben erscheinen z. B. chronische Versuche, die Einbeziehung anderer Stoffgruppen, die Verwendung von Arten aus anderen Lebensräumen und/oder die Einbeziehung von belasteten Beuteorganismen sinnvoll.

Literatur

- Bolle, D.; Wauthy, G. & Lebrun, P. 1976. Étude préliminaire sur les hydracariens (Acari, Prostigmata) en tant que bioindicateurs de pollution des eaux courantes. Ann. Soc: R. Zool. Belg. 106: 201-210.
- Colombo, I.; Wolf, W.; Thompson, R. S.; Farrar D. G.; Hoke, R. H. & L'Haridon, J. 2008. Acute and chronic aquatic toxicology of ammonium perfluorooctanoate (APFO) to freshwater organisms. Ecotox. and Enviro Safety 71: 749-756.
- Cornelius, A. (2013): Ökotoxikologische Untersuchungen an Wassermilben (Hydrachnidia, Acari). Bachelorarbeit Universität Kiel, 59 S. + Anhang.
- Dohet, A.; Ector, L.; Cauchie, H. M.; Hoffmann, L. 2008. Identification of benthic invertebrate and diatom indicator taxa that distinguish different stream types as well as degraded from reference conditions in Luxembourg. Anim. Biol. 58 (4): 419–472. Fairhild, W. L. & Eidt, D. C. 1993: Perturbation of the Aquatic Invertebrate Community of Acidic Bog Ponds by the Insecticide Fenitrothion. Arch. Environ. Contam. Toxicol. 25: 170-183.
- Fent, K. 2007. Umweltchemie-Toxikologie-Ökologie. Georg Thieme Verlag, Stuttgart-New York. Auflage 2: 288.
- Folmar, L. C.; Sanders, H. O. & Julin, A. M. 1979. Toxicity of the herbicide glyphosat and serveral of its formulations to fish and aquatic invertebrates. Arch. Environm. Contam. Toxicol. 8: 269-278.
- Georg, A. 2013. Ökotoxikologische Untersuchungen an Quellorganisen. Deutsche Gesellschaft für Limnologie (DGL) Erweiterte Zusammenfassung der Jahrestagung 2012 (Konstanz), Hardegsen 2013 (476-481).
- Gerecke, R. & Schwoerbel, J. 1991. Water quality and water mites in the upper Danube region, 1959-1884. Modern Acarology, Vol.1: 483-491.
- Hoff, P.; Van de Vijver, K.; Van Dongen, W.; Esmans, E. L.; Blust, R. & De Coen, W. M. 2003. Perfluorooctane sulfonic acid in bib (*Trisopterus luscus*) and plaice (*Pleuronectes platessa*) from the wester scheldt and the Belgian Northsea: distribution and biochemical effects. Environ. Toxicol. Chem. 22: 608–614.
- Li, M.-H. 2008. Toxicty of Perflurorooctane Sulfonate and Perfluorooctanoic Acid to Plants and Aquatic Invertebrates. Odicals, Inc. Environ. Toxicol. 24: 95-101.
- Martin, J. W.; Mabury, S. A.; Solomon, K. R.& Muir, D. C. G. 2003. Bioconcentration and tissue distribution of perfluorinated acids in rainbow trout (*Oncorhynchus mykiss*). Environ. Toxicol. Chem. 22: 196–204.
- Mel'nichuk, S. D. & Lokhanskaya, V. I. 2007. Estimation of Toxicity of Glyphosate-Based Herbicides by Biotesting Method Using Cladocera. Hydrobiol. J. 43: 80-91.
- Miccoli, F. P.; Lombardo, P.; Cicolani, B. 2013. Indicator value of lotic water mites (Acari: Hydrachnidia) and their use in macroinvertebrate-based indices for water quality assessment purposes. Knowl. Managt. Aquatic Ecosyst. (411), 8. Monsanto Europe S.A. 2009. Version 6.1. Sicherheitsdatenblatt.
- Nair, G. A. 1981. Toxic effects of certain biocides on a fresh water mite, *Hydrachna trilobata* Viets (Arachnida: Hydrachnoidea: Hydrachnidae). J. Environ. Biol. 2 (2): 91–96.
- Rousch, J. M.; Simmons, T. W.; Kerans, B. L. & Smith, B. P. 1997. Relative acute Effects of low pH and high iron on the hatching and survival of the water mite (*Arrenurus manubriator*) and the aquatic insect (*Chironomus riparius*). Environ. Toxicol. Chem. 16(10): 2144-2150.
- Rundle, S. D. & Hildrew, A. G. 1990. Micro-arthropod seasonality in streams of varying pH. Freshwater Biol. 24: 1-21.
- Schwoerbel, J. 1959. Ökologische und tiergeographische Untersuchungen über Milben (Hydrachnellae, Acari) der Quellen und Bäche des südlichen Schwarzwaldes und seiner Randgebiete. Mit vergleichender Berücksichtigung der Baar, der oberen Donau und der südlichen Vogesen. Arch. Hydrobiol., Suppl. 24: 385-546.
- Smith, I. M. 1991. Water mites (Acari: Parasitengona: Hydrachnida) of spring habitats in Canada. In: Williams D. D., Danks H. V. (eds) Arthropods of springs, with particular reference to Canada. Mem. Entomol. Soc. Can. 155: 141-167.
- Smith, I. M; Cook, D. R; Smith, B. P 2009. Water mites (Hydrachnida) and other arachnids. In: J.H Thorp und A.P Covich (Hg.): Chapter 15: Ecology and Classification of North American Freshwater Invertebrates. 3rd edition. San Diego: Academic Press: 485–586.
- Yi, S. A.; Francis, B. M.; Jarrell, W. M. & Soucek, D. J. 2011. Toxicological effects of the aquatic herbicide, fluridone, on male water mites (Hydrachnidiae: *Arrenurus: Megaluracarus*). Ecotoxicol. 20: 81-87.

Auf dem Weg zu einer ökologischen Grabenunterhaltung in Norddeutschland!

Manuela Voßkuhl & Ellen Kiel

Carl von Ossietzky Universität Oldenburg, Institut für Biologie und Umweltwissenschaften (IBU), AG Gewässerökologie und Naturschutz, D-26111 Oldenburg, E-Mail: Manuela.vosskuhl@uni-oldenburg.de, Ellen.kiel@uni-oldenburg.de

Keywords: Gräben, Nordwestdeutschland, Makrozoobenthos, ökologische Grabenunterhaltung

Einleitung

Gräben bilden in der norddeutschen Kulturlandschaft ein prägendes und strukturierendes Gewässerelement. Mehr als 30.000 km Gräben durchziehen allein in Niedersachsen und Bremen den Naturraum Watten und Marschen. Viele Gräben können trotz der Grabenunterhaltung Ersatzlebensräume und Refugien für Arten darstellen, die wegen der intensiven Umfeldnutzung selten geworden sind. Auch beeinflussen sie die Qualität der größeren Gewässer, denen sie zufließen, und können durch ein gezieltes Grabenmanagement sowohl Belange des Naturschutzes als auch Ziele der EU-Wasserrahmenrichtlinie (EU-WRRL) verbinden. Wie für viele künstliche Gewässer, fehlen zu den Grabensystemen Nordwestdeutschlands regionale, systemangepasste Managementkonzepte, die sowohl die wasserwirtschaftliche als auch die ökologische Lebensraumfunktion sichern. Vielfach resultiert dieses Defizit aus mangelnden ökologischen Kenntnissen und Informationen über Störfaktoren und ihre Wirkung. Im Projekt "Gräben in Nordwestdeutschland" (CvO Uni Oldenburg, AG Gewässerökologie) wurden daher grundlegende Untersuchungen zum Lebensraum Graben durchgeführt. Basierend auf den Ergebnissen wird die Entwicklung eines großräumigen Managementplans angestrebt.

Ein bislang umstrittener Aspekt eines ökologisch orientierten Grabenmanagements ist die Frage nach einem geeigneten Unterhaltungszeitraum. Fachleute von Naturschutz und Wasserwirtschaft führen darüber seit langem teils intensive Diskussion, die in der Argumentation bisher allerdings selten die Ökologie der gesamten Grabenfauna einbezog, sondern vorwiegend ausgewählte Tiergruppen oder Pflanzenarten in den Vordergrund stellt. Eine Auswertung der Lebenszyklen grabenbewohnender Invertebraten im Hinblick auf einen geeigneten Unterhaltungszeitraum wurde bisher nicht ausführlich vorgenommen. Für das in diesem Projekt ermittelte Arteninventar erfolgte daher erstmals eine Auswertung, die auf Basis der Biologie und Phänologie dieser Taxa und deren empfindlichsten aquatischen Entwicklungsstadien das Gefährdungspotential von Unterhaltungsmaßnahmen präzisiert. Die zeitliche, taxon- und stadienspezifische Differenzierung erlaubt die Benennung von Konfliktzeiträumen und so die Erarbeitung von Kompromissen und großräumigen Managementplänen.

Material und Methoden

Literaturauswertung

Im Hinblick auf die Abwägung von Unterhaltungseffekten auf die Wirbellosenfauna und das Ziel einer ökologischen Grabenunterhaltung wurde eine umfassende Studie einschlägiger Fachliteratur durchgeführt (Literaturbasis siehe Voßkuhl & Kiel 2013). Deren Resümee liefert Aussagen zur Phänologie der aquatischen Wirbellosen und darüber die Basis des hier vorgestellten Konzeptes zur Bewertung der Gefährdungspotentiale von Unterhaltungsmaßnahmen für ausgewählte Grabenbesiedler. Das Konzept differenziert saisonale und tiergruppenspezifische Risiken (Tab. 1), bezieht allerdings exemplarisch ausschließlich Taxa ein, die in einer Basisstudie (Schröder 2012) an 18 ausgewählten Gräben in Wüsting (Oldenburg) im Rahmen einer einmaligen Untersuchung im Juli 2011 nachgewiesen wurden (Schnecken, Käfer, Wanzen, Köcherfliegen).

Auf Grundlage der Literaturaussagen erfolgte eine Einstufung empfindlicher Entwicklungsphasen und des Reproduktionspotentials der Taxa sowie der potenziellen Stärke der Beeinträchtigung durch Unterhaltungsmaßnahmen. Diese Einstufung differenziert die Wirkung auf die Ei-, Larven- (ggf. Puppen) und die Imaginalstadium. Die Sicherung des Fortbestehens der gesamten Population (nicht einzelner Individuen) bildet dabei die Bewertungsmaxime. Dazu wurde beispielsweise angenommen, dass Unterhaltungsmaßnahmen auf immobile, aquatische Entwicklungsstadien (z.B. Gelege) so stark wirken, dass bestandserhaltende Schlupfzahlen nicht erreicht werden können oder dass juvenile Tiere langsamer schwimmen als adulte derselben Art, also eine geringere Chance besitzen vor Räumgeräten zu fliehen.

Tab. 1: Einstufung der Gefährdung unterschiedlicher Entwicklungsstadien ausgewählter, aquatischer Wirbellose durch Unterhaltungsmaßnahmen, Die Einstufung basiert für die einzelnen Taxa auf den in Voßkuhl & Kiel (2013) skizzierten Überlegungen zur Biologie und Ökologie.

Entwicklungsphase	Ei	Larve/Juvenil	Puppe	Adult
Schnecken	Hoch (100%)	Hoch (100%)		Mittel (50%)
Käfer	Hoch (100%)	Mittel (50%)	Gering (0%)	Gering (0%)
Wanzen	Hoch (100%)	Mittel (50%)		Gering (0%)
Köcherfliegen	Hoch (100%)	Hoch (100%)	Hoch (100%)	Mittel (50%)

Rechnerische Umsetzung des Konzepts

Die Stärke der o. a. Gefährdungseinstufung (Tab. 1) wird in Prozentwerte übertragen. Die grobe Dreiteilung der Skala stellt derzeit einen ersten Ansatz und Methodenvorschlag dar, der durch zusätzliche Details in Zukunft erweitert und differenziert werden muss. Für jede Art wurde die monatliche Beeinträchtigung entsprechend des jeweiligen Entwicklungsstadiums bestimmt. Zusammenfassend wird darauf aufbauend das monatliche Mittel der Beeinträchtigung je Ordnung berechnet. Dies kann auch für andere Gruppierungen der Arten wiederholt werden, z.B. für alle Arten der Geestgräben bzw. Marschgräben.

Ergebnisse & Diskussion

Die bearbeiteten Gruppen umfassen die Süßwasserschnecken (im Untersuchungsgebiet mit 17 Taxa und 6997 Individuen erfasst), die Käfer (33 Taxa, 1362 Ind.), die Wanzen (17 Taxa, 627 Ind.) und die Köcherfliegenlarven (11 Taxa, 107 Ind). Mit 94 % stellten die Süßwasserschnecken in dieser Untersuchung den größten Anteil der Besiedlungsdichte und kamen an 17 der 18 Standorte vor. Weit geringere Anteile umfassten die Wasserkäfer mit 3%, und die Köcherfliegen und Wanzen mit jeweils 1% der Gesamtindividuen. Wasserkäfer konnten an allen untersuchten Standorten erfasst

werden. Wanzen wurden an 17, Köcherfliegenlarven nur an 13 der 18 untersuchten Standorte nachgewiesen. Auf Basis dieses Arteninventars wurde das mittlere monatliche Gefährdungspotential ermittelt (Abb. 1 & 2), das entstünde, wenn Unterhaltungsmaßnahmen zum jeweiligen Zeitpunkt in das System eingreifen würden.

Für die erste der beiden Darstellungen (Abb. 1) wurden die Taxa der vier Ordnungen zusammengefasst. Nach den Ergebnissen dieser Untersuchung dürfte die Störungsempfindlichkeit für drei der vier betrachteten Taxa im Herbst geringer sein als im restlichen Jahresverlauf. Sie zeigen aber auch deutlich, dass es *den* optimalen Zeitraum der Unterhaltung nicht gibt. Vergleichbare Diskrepanzen hinsichtlich des optimalen Zeitraums von Unterhaltung beschreiben auch Pardey et al. (2004) für Schnecken, Käfer, Wanzen und andere Zielgruppen (z.B. Fische, Amphibien, Großmuscheln, Libellen, Wasserpflanzen). Es wird daher im weiteren Diskussionsprozess angestrebt, Kompromisse zu entwickeln, bei denen sowohl die Entwässerung gewährleistet ist als auch die Lebensgemeinschaften im Graben, zu denen nicht allein Wirbeltiere zählen, berücksichtigt werden.

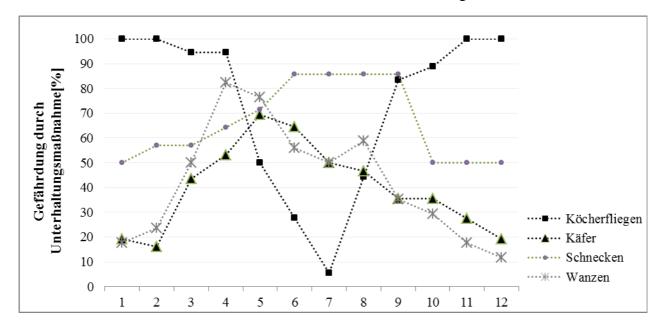


Abbildung 1: Grad der Gefährdung der Taxa durch Unterhaltungsmaßnahmen je Monat, dargestellt am Beispiel der Köcherfliegen, Käfer, Schnecken und Wanzen, die im Untersuchungsgebiet in den Gräben siedelten (Basisdaten und Entscheidungsgrundlage siehe Voßkuhl & Kiel 2013)

Eine weitere Analyse im Hinblick auf das zukünftige Grabenmanagement fragte nach naturräumlichen Unterschieden, die ggf. bei einer Bewertung von Unterhaltungsmaßnahmen berücksichtigt werden müssten. Vermutet wurde, dass sich Arten desselben Naturraums in ihren Anpassungsstrategien und Lebenszyklen ähnlicher seien, langfristig also typspezifische Unterhaltungskonzepte möglich (bzw. nötig) würden. Die Berechnung bezieht deshalb ein, in welchen der untersuchten Naturräumen (Geest vs. Marsch) die Taxa in dieser Studie (Schröder 2012) auftraten, unterscheidet jedoch nicht nach systematischer Ordnung. Der Versuch räumliche Unterschiede in der Phänologie der jeweiligen Taxa zu beschreiben, ergab jedoch keine deutliche Trennung (Abb. 2). Das liegt bei diesem Beispiel vermutlich daran, dass die untersuchten Gräben der beiden Naturräumer räumlich noch sehr nahe beieinander liegen und somit Standorte der Übergänge zwischen den Naturräumen erfasst wurden.

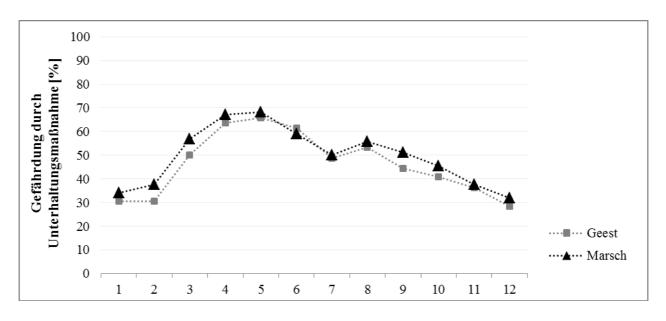


Abbildung 2: Grad der Gefährdung der Taxa durch Unterhaltungsmaßnahmen je Monat, spezifisch je Naturraum, Grundlage bilden die Arten der Köcherfliegen, Käfer, Schnecken und Wanzen, die im Untersuchungsgebiet in den Gräben siedelten (Basisdaten und Entscheidungsgrundlage siehe Voßkuhl & Kiel 2013)

Die Effekte der Unterhaltungsmaßnahmen in einem bestimmten Zeitraum konnten in diesem ersten Ansatz nur grob skizziert werden. Um umfassendere Aussagen über die Wirkung einzelner Maßnahmen, Geräte und Zeiträume machen zu können, werden mehrjährige, vergleichende Untersuchungen an ausgewählten Grabenstrecken benötigt, an denen die unterschiedlichen Unterhaltungsmaßnahmen durchgeführt wurden und deren Auswirkungen auf die jeweils auftretenden Arten beschrieben werden können (vgl. dazu Jordan et al., 2010). Die Ergebnisse der hier vorgestellten Untersuchung und Auswertung liefern vielmehr einen methodischen Ansatz, der zukünftig im Sinne einer schonenden, ökologischen Grabenunterhaltung zur Kompromissfindung eingesetzt werden kann. Man wird, aufbauend auf diesen, zukünftig zu erweiternden Daten und Auswertungen, grabenabschnittsweise Zielgruppen bzw. auch Zielarten bestimmen können, an denen eine zeitliche Ausrichtung der Maßnahmen möglich wird. Gleichzeitig kann in weiteren Gräben oder Grabenabschnitten der Fokus auf andere Gruppen liegen. Bei dem speziell in Norddeutschland stark vernetzten Grabensystem, böte sich so an, analog dem Prinzip des "Mosaik-Zyklus Konzepts", ähnlich wie im Wald, Nutzung und Biodiversität zu vereinbaren. Der hier entwickelte Ansatz bedarf, wie auch bei den in Bremen bereits umgesetzten Konzepten zur "ökologischen Grabenräumung" (Handke 1999, Kunze 2010), ökologisch-limnologischer Expertise, dürfte jedoch – angelegt als Langzeitkonzepte mit dem Ziel des "so viel wie Nötig, so wenig wie möglich" - finanziell und gesellschaftlich tragbar und nachhaltig sein.

Danksagung

Den Mitarbeitern des Unterhaltungsverbands Wüsting und der AG Gewässerökologie und Naturschutz der Carl von Ossietzky Universität Oldenburg danken wir für die vielfältige Unterstützung.

Referenzen

- EU (2000): Richtlinie 2000/60/EG des Europäischen Parlaments und des Rates vom 23. Oktober 2000 zur Schaffung eines Ordnungsrahmens für Maßnahmen der Gemeinschaft im Bereich der Wasserpolitik. Amtsblatt der Europäischen Gemeinschaft.
- Handke, U., Köck, B., Kundel, W., Riesner-Kabus, M. & Schreiber, K.-F. (1999) Grabenräumprogramm in der Bremer Flussmarsch Ergebnisse vegetationskundlicher und faunistischer Begleituntersuchungen. Naturschutz und Landschaftsplanung, **31**, 267–274.
- Jordan, R., Kesel, R., Kundel, W., Zacharias, D. (2010): Erprobung von Managmentmaßnahmen in Bremen zum Erhalt der Krebsschere als Leitart für die ökologisch wertvollen Graben-Grünland-Gebiete der Kulturlandschaft Nordwestdeutschlands - Endbericht zum DBU-geförderten Forschungs- und Kooperationsvorhaben Krebschere. (ed. K. Kunze) i.A. der Haneg - Hanseatische Naturentwicklung GmbH, Bremen, 225 S.
- Kunze, K., Jordan, R., Kesel, R. & Kundel, W. (2010) Marschengräben ökologisch verträglich unterhalten Leitfaden zur ökologischen Grabenunterhaltung auf Grundlage der Ergebnisse des Forschungs- und Kooperationsvorhabens in Bremen zum Erhalt der Krebsschere. (ed. Haneg Hanseatische Naturentwicklung GmbH), Bremen, 26 S.
- Pardey, A., Rauers, H., Van de Weyer, K. & Thomas, B. (2004) Gräben in Nordrhein-Westfalen, Empfehlungen zur Unterhaltung aus naturschutzfachlicher Sicht. LÖBF-Mitteilungen, **4**, 40–47.
- Schröder, M. (2012) Vergleichende Studie zur Ökologie des Makrozoobenthos ausgewählter Gräben Nordwestdeutschlands. Master Arbeit, Carl von Ossietzky Universität Oldenburg, 67 S.
- Voßkuhl (Schröder), M. & Kiel, E. (2013): Vergleichende Studie zur Ökologie ausgewählter Gräben Nordwestdeutschlands im Hinblick auf eine zukünftige regionalspezifische Bewertung Interner Abschlussbericht 2013 Teil Makrozoobenthos, Oldenburg, 55 S.

UMWELTBILDUNG

BRIEGER, H. & K. G. LEIPELT: Der Vampir des Meeres: Biologie des Meerneunauges vermitteln

HERTWECK, K., M. HUNN, A. SCHWARZ, S. SPÄTH & W. SCHMITZ: Zwerg und tierischer Schaumschläger: Selbstreinigung und Desinfektion mit "Oxi-Action" bei Plea leachi

KUBSCH, G. & L. TÄUSCHER: Sommerkurse für Umweltchemie und Umweltanalytik

SCHMITZ, W.: Umweltbildung interdisziplinär – Modellexperimente zur Gewässerversauerung (Experimentalvortrag)

Der Vampir des Meeres: Biologie des Meerneunauges vermitteln

Hendrik Brieger & Klaus Guido Leipelt

Institut für Biologie und Schulgartenentwicklung, PH Karlsruhe, Bismarckstraße 10, 76133 Karlsruhe, hendrikbrieger@web.de, leipelt@ph-karlsruhe.de

Keywords: Meerneunauge, Funktionsmodell, Saugglocke, Umweltbildung

Einleitung

Warum das Meerneunauge sich für die Umweltbildung eignet

Das Meerneunauge *Petromyzon marinus* gehört zu den Rundmäulern (Cyclostomata) und ist ein wichtiger Organismus zum Verständnis von Laichwanderungen bei aquatischen Tierarten und gleichzeitig ein Modell für die Co-Evolution von Neunaugen und Fischen. Mit seiner parasitischen Ernährungsweise stellt das Meerneunauge ein anspruchsvolles und gleichzeitig reizvolles Objekt dar, das in der limnologischen und fischereilichen Allgemeinbildung seinen Platz haben sollte. Im Mittelpunkt dieses Beitrages steht die Funktionsmorphologie des Nahrungsaufnahmeapparats dieser interessanten Tierart. Anhand eines einfachen Modells soll dieser Apparat veranschaulicht werden.

Das Meerneunauge

Merkmale: Die Tiere erreichen eine Länge von bis zu 100 cm (Sterba 1952), sind aalförmig gebaut, ohne paarige Flossen. Sie besitzen eine fleckige Zeichnung und ein rundes Saugmaul, das eine charakteristische Bezahnung aufweist (Abb. 1a). Die Bezeichnung Neunauge rührt daher, dass von der Seite betrachtet die unpaare Nasenöffnung, ein Auge und sieben Kiemenöffnungen zu sehen sind, die früher als Augen gedeutet wurden (Sterba 1952).

Biologie: Die blinden Larven des Meerneunauges, Querder genannt, leben 6-8 Jahre als Filtrierer im sandigen Boden von Flüssen und Bächen (Abb. 1b). Ihre Nahrung besteht zu dieser Zeit aus Mikroorganismen, Algen und organischen Schwebstoffen und wird über den Atemwasserstrom aufgenommen. Nach der Metamorphose wandern die adulten Tiere ins Meer ab, wo sie etwa 3 Jahre als Parasiten an Fischen leben. Zum Ablaichen wandern die Meerneunaugen wieder in die Oberläufe der Flüsse, wo die Weibchen auf steinigem Grund bis zu 300.000 Eier in eine flache Grube ablegen. Danach sterben die Meerneunaugen (LUWG 2013).

Funktion des Saugmauls

Mithilfe ihres Saugmauls saugen sich die adulten Meerneunaugen an Fischen fest. Mit den Hornzähnen verletzen sie die Fische und saugen deren Blut. Andere Neunaugenarten, wie z.B. das Flussneunauge, ernähren sich mehr von Haut und Muskelfleisch als vom Blut der Fische (Potter & Hilliard 2009). Das Saugmaul dient auch zum Anlegen der Laichgruben am Grunde der Flüsse und

Bäche, in die die Eier abgelegt werden. Dazu werden Steine mit dem Saugmaul angesaugt und weggeräumt.

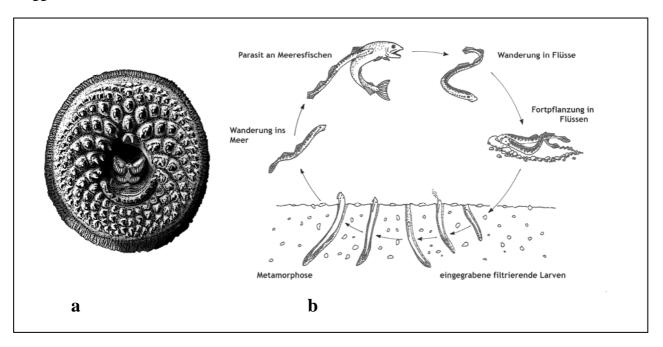


Abb. 1: Saugscheibe (a) und Lebenszyklus (b) von Petromyzon marinus (Zeichnungen: Stefano Marci)

Der Saugmechanismus

Nachdem sich das Meerneunauge mit seiner Saugscheibe festgesaugt hat, bewegt es den Zungenknorpel (ein langes, pumpenstempelartiges Knorpelstück) vor und zurück. Beim Vorschieben des Zungenknorpels werden die um die Mundöffnung stehenden Zähne sowie die Zähne an der Spitze des Zungenknorpels nach vorne geschoben. Mit den langen Zähnen des Zungenknorpels werden tiefere Wunden hervorgerufen als mit den übrigen Zähnen. Durch diese tieferen Wunden erzeugt das Meerneunauge einen stärkeren Blutfluss. Beim Zurückziehen des Zungenknorpels neigen sich die Zähne, die um die Mundöffnung herum angeordnet sind, einander zu und werden gleichzeitig zurückgezogen, wodurch sie auch Haut- und Fleischstücke herausreißen können. Außerdem drückt der Zungenknorpel beim Zurückziehen den Mundboden an das Munddach und sorgt so für einen Sog, der die Nahrung in die Mundhöhle befördert (Fechter 1971).

Das Modell

Materialien

- eine haushaltsübliche Saugglocke (Durchmesser 110 mm)
- mind. 9 kleine Nägel (ca. 1,5 cm lang)
- drei große Nägel (ca. 6,5 cm lang)
- ein Dichtungsring/Spülkastenscheibe: 29 mm (innerer Durchmesser) x 65 mm (äußerer Durchmesser) x 3 mm (Dicke)
- ein Stück Schlauch: ca. 15 cm lang; Durchmesser gerade so groß, dass der Schlauch auf den Fortsatz des Saugnapfes gezogen werden kann

- eine Mutter (M16)
- Gewebeklebeband
- Sekundenkleber oder anderer geeigneter Kleber

Hinweise

Beim Kauf des Materials sollte darauf geachtet werden, dass die Bauteile ineinander passen, damit die Fähigkeit des Modells zu saugen gewährleistet ist.

Werkzeuge

Messer, Beißzange, Schere, Hammer, Bohrmaschine (oder Akkuschrauber) mit Bohrer

Bauanleitung

- 1. Ziehe den Stab der Saugglocke aus dem Saugnapf.
- 2. Schneide den Boden des Fortsatzes für den Stab heraus, so dass ein "Mund" in der Mitte des Saugnapfes entsteht (Abb. 2a).
- 3. Drücke die Mutter bis zum Anschlag in den Fortsatz, um diesen zu stabilisieren.
- 4. Biege die kurzen Nägel etwa 0,8 cm vor dem Kopf ein wenig und drücke sie in der richtigen Anordnung dicht neben dem Fortsatz in den Saugnapf (Abb. 2a) und kürze sie gegebenenfalls (ca. 1,5 cm).
- 5. Schiebe den Dichtungsring über den Fortsatz, um zu verhindern, dass die Nägel aus dem Saugnapf herausgedrückt werden (der Dichtungsring muss also so groß sein, dass er die Nägel bedeckt).
- 6. Schiebe das Schlauchstück über den Fortsatz (Abb. 2b).
- 7. Schnitze das Ende des Stabes auf einer Strecke von ca. 3-4 cm so dünn, dass es ohne Berührung problemlos in den Fortsatz passt.
- 8. Entferne mit der Beißzange die Köpfe der langen Nägel.
- 9. Bohre drei Löcher (ca. 1,5 cm tief) mit dem Durchmesser der langen Nägel in das dünne Ende des Stabes, fülle etwas Klebstoff hinein und stecke die Nägel mit dem abgezwickten Ende in diese hinein (Abb. 2c). Nun klopfe sie mit dem Hammer fest und lasse den Kleber trocknen (Achtung: die Löcher müssen so angeordnet sein und so nahe beieinander liegen, dass die Nägel durch die Mutter hindurch passen).
- 10. Umwickle den Stab dicht hinter dem dünnen Ende (ca. 5 cm) so dick mit Gewebeband (Abb. 2c), dass er gerade so in den Schlauch passt. Er muss darin vor und zurückgeschoben werden können und trotzdem luftdicht abschließen.

Möglichkeiten und Grenzen des Modells

Das Modell (Abb. 2d) vermag zu zeigen, wie der Nahrungsaufnahmemechanismus des Meerneunauges prinzipiell funktioniert und kann gerade Schülerinnen und Schülern anschaulich eine scheinbar ungewöhnliche Lebensweise nahebringen. Viele der für den Mechanismus relevanten Körperteile der Meerneunaugen sind im Modell, wenn auch vereinfacht, nachgebildet.

Was das Modell nicht leisten kann, ist zum einen das selbstständige Ansaugen, wie es das Meerneunauge tut. Im Umgang mit dem Modell muss dieses aktiv angedrückt und festgehalten werden.

Zum anderen war es nicht möglich nachzubauen, wie der Zungenknorpel den Mundboden gegen das Munddach drückt. Stattdessen füllt der Stab den Schlauch, der die Mundhöhle darstellt, vollständig aus. Zuletzt konnte die genaue Bewegung der Zähne, wie sie beim Meerneunauge stattfindet, nicht nachgeahmt werden.

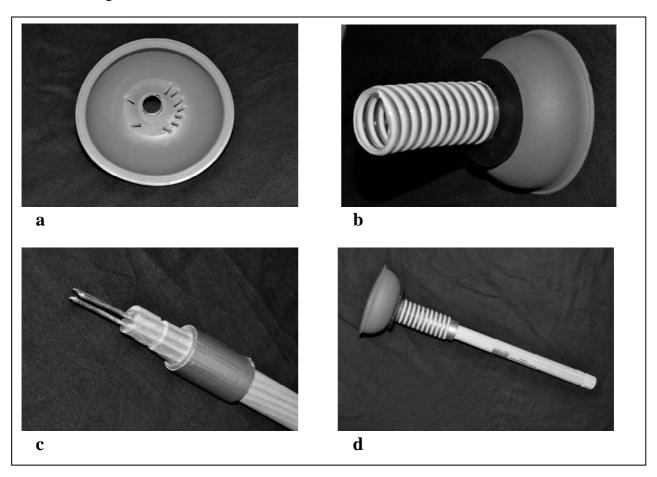


Abb. 2: Modell eines Meerneunaugen-Saugmauls: a) Saugnapf mit herausgeschnittenem Loch und applizierten Nägeln; b) Saugnapf mit Dichtungsring und Schlauch; c) Vorderende des Stabes mit drei langen Nägeln und Gewebebandumwicklung; d) fertiges Modell

Danksagung

Anlass für die Entwicklung dieses Funktionsmodells war die Suche nach Zusatzmaterialien für die Broschüre "Faszinierende Fischvielfalt am Oberrhein" (Grabow et al. 2014) zum gleichnamigen Teilprojekt im Rahmen des LIFE+-Projektes "Rheinauen bei Rastatt".

Literatur

Fechter, H. (1971): Manteltiere, Schädellose, Rundmäuler. Walter de Gruyter & Co., Berlin: S. 174. Grabow, K., Leipelt, K.G., Remmele, M. & Martens, A. (2014): Faszinierende Fischvielfalt am Oberrhein. Stiftung Naturschutzfonds Baden-Württemberg, Stuttgart, 40 S.

Landesamt für Umwelt, Wasserwirtschaft und Gewerbeaufsicht Rheinland-Pfalz (2013): Steckbrief zur Art 1095 der FFH-Richtlinie. Meerneunauge (Petromyzon marinus). URL:

http://www.natura2000.rlp.de/steckbriefe/index.php?a=s&b=a&c=ffh&pk=1095 [Stand: 29.01.2014] Potter, I.C. & Hilliard R.W. (2009): A proposal for the functional and phylogenetic significance of differences in the dentition of lampreys. Journal of Zoology 212: 713–737.

Sterba, G. (1952): Die Neunaugen. Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig.

Zwerg und tierischer Schaumschläger: Selbstreinigung und Desinfektion mit "Oxi-Action" bei *Plea leachi*

Kassandra Hertweck, Mareike Hunn, Aaron Schwarz, Sarina Späth & Wolfgang Schmitz¹

Keywords: *Plea leachi*, Wasserstoffperoxid, Metathorakaldrüse, Experimente zur Chemischen Ökologie, Umweltbildung

Einleitung

Der in Teichen und Tümpeln vorkommende nur 2,5 mm große Zwergrückenschwimmer *Plea leachi* verlässt des Öfteren das Wasser, um sich lange und gründlich zu putzen. Dabei reibt er sich mit dem Sekret aus der Metathorakaldrüse ein. Die Zusammensetzung des Sekrets ist in der Literatur beschrieben (Aldrich 1988; Maschwitz 1967, 1968, 1971; Kovac & Maschwitz 1990; Staddon 1979). Neben phenolischen Carbonyl-Verbindungen enthält es Wasserstoffperoxid, das antiseptisch wirkt (Aldrich 1988). *Plea leachi* hält sich auf diese Weise Pilze und Bakterien vom Leib. Bemerkenswert ist, dass *Plea* in der Metathorakaldrüse Wasserstoffperoxid in einem relativ hohen Konzentrationsbereich von w=10–15% erzeugt (Maschwitz 1971). Im Gegensatz zum Bombardierkäfer basiert das Wehrsekret nicht auf einem Katalase/Peroxidase-katalysierten Hydrochinon-Wasserstoffperoxid-Redoxsystem (Schildknecht 1970, Maschwitz 1971).

Offensichtlich hat bei *Plea* die ursprünglich gegen größere Feinde gerichtete Wehrdrüse beim Übergang vom Land- zum Wasserleben einen Funktionswechsel durchgemacht. "Aus einer Waffe gegen größere Feinde ist eine solche gegen Mikroorganismen geworden" (Maschwitz 1971).

Wasserstoffperoxid wird in Geweben durch z.B. Oxidasen gebildet und durch Katalasen und Peroxidasen zersetzt. Wasserstoffperoxid wirkt antiseptisch; bis heute werden Lösungen mit *w*=3% zur Munddesinfektion verwendet.

Auch Phenol bzw. Phenolderivate wirken antiseptisch, da sie als starkes Protoplasmagift wirken (Moeschlin 1986). Im 19. Jahrhundert war Phenol nahezu das einzige Antiseptikum (Falbe & Regitz 1995). Heute spielt es in der Medizin als Desinfektionsmittel fast keine Rolle mehr.

Mithilfe einfacher Experimente soll der Nachweis von Wasserstoffperoxid im Sekret des Zwergrückenschwimmers durchgeführt sowie die biochemisch relevanten Reaktionen von Wasserstoffperoxid veranschaulicht werden.

¹ Pädagogische Hochschule Karlsruhe, Institut für Chemie, Bismarckstraße 10, 76133 Karlsruhe; kassandrahertweck@gmx.de; mhunn@arcor.de; Sari_spaeth@web.de; wolfgang.schmitz@ph-karlsruhe.de ¹

Wasserstoffperoxid-Nachweis mit Titanylsulfat

Ein Filterpapier wird mit einer Suspension von Titanylsulfat versetzt. Anschließend setzt man ein Exemplar von *Plea leachi* auf das Filterpapier. Während des Putzaktes des Tieres gibt es das Wasserstoffperoxid-haltige Metathorakal-Sekret ab, welches mit Titanylsulfat einen positiven H₂O₂-Nachweis (Orange-Färbung) gemäß Gleichung (1) ergibt (Abb. 1). In Anlehnung an die Arbeiten von Maschwitz (1971) kann man auch mit Hilfe eines Filterpapierstreifens *Plea leachi* während des Putzaktes etwas Drüsensekret von der Unterseite abnehmen und anschließend mit Titanylsulfat prüfen.

$$TiOSO_4 + H_2O_2 \rightarrow TiO_2SO_4 + H_2O$$
 (1b)

Abb. 1: Positiver H₂O₂-Nachweis (Orangefärbung) des Sekretes von Plea leachi

Desinfektion mit "Oxi-Action"

"Harte Maßnahmen": An einem toten Exemplar von *Plea leachi* wird die Metathorakal-Drüse aufgeschnitten. Dabei ist eine sofortige Schaumbildung des Drüseninhaltes zu beobachten (Abb. 2). Ein durchgeführter Nachweis auf Wasserstoffperoxid verläuft positiv. Das sich entwickelnde Gas ist Sauerstoff.

Abb. 2: Imago von *Plea leachi* mit verletzter Metathorakaldrüse, deutlich erkennbar ist die sofortige Schaumbildung.

Der Brilliantschwarz-Reduktions-Test (BR-Test)

Geräte und Chemikalien: 5 BR-Teströhrchen (Bezugsquelle: MILKU Tierhygiene GmbH, www.milku.de), Trockenschrank, Reagenzgläser, Tropfpipetten, Phenol*, Wasserstoffperoxid*

Versuchsdurchführung: Nach Entfernen der Schutzfolie der fünf BR-Teströhrchen wird das Testreagenz mit jeweils 0,25 mL 1.) dest. Wasser, 2.) Wasserstoffperoxid-Lösung (w=15%), 3.) Phenol-Lösung (w=5%), 4.) Phenol-Lösung (w=1%) und 5.) Phenol-Lösung (w=0,5%) überschichtet.

Die Testampullen werden anschließend für 4 Stunden in einen auf 60 bis 65°C vortemperierten Trockenschrank gestellt.

Beobachtung: Nach 4 Stunden hat sich das Testmedium, das mit dest. Wasser überschichtet wurde, nach gelb verfärbt. Die Testmedien in den Röhrchen 2. bis 5.) bleiben blau gefärbt (Abb. 3).

Auswertung: Der Azofarbstoff Brillantschwarz wird in Probe a) durch Azoreduktasen gespalten (Gelbfärbung). Sind Hemmstoffe vorhanden (hier: die von *Plea leachi* produzierten Stoffe Phenol und Wasserstoffperoxid), wird das Wachstum der Testorganismen unterdrückt und die Reduktion des Farbstoffes Brillantschwarz bleibt aus (Kudlich 1998). Die Farbe des Testreagenz bleibt blauviolett. Detailliertere Informationen über den entstandenen gelben Farbstoff bei der Reduktion von Brillantschwarz sind bei Herriger, Schmitz, Zajonc und Ducci (2012) zu finden.

Dieses Experiment zeigt sehr anschaulich die antiseptische Wirkung des von *Plea leachi* produzierten Metathorakal-Sekrets.

Abb. 3: Ergebnis des BR-Tests (Probe 1: Gelbfärbung, Proben 2-5: Violettfärbung)

Experimente zur antiseptischen Wirkung von Wasserstoffperoxid

Variante A: BR-Test

Man verfährt wie vorab beschrieben unter Verwendung des BR-Tests (Probe mit Wasserstoffperoxid, Vergleichsprobe mit dest. Wasser, s.o., (Abb. 4)).

Abb. 4: BR-Test mit Wasserstoffperoxid (links, violett) und Wasser (rechts, gelb)

Variante B: Hemmung von Hefepilzen mit Wasserstoffperoxid

Geräte und Chemikalien: 2 Enghals-Erlenmeyerkolben (250 mL), 2 Luftballons, Tropfpipetten, Wasserstoffperoxid*, 1 Päckchen Trockenhefe, Glukose.

Versuchsdurchführung: Die Erlenmeyerkolben werden mit je 10 g Glukose, ½ Portion der Trockenhefe und 20 mL Wasser befüllt. In einen Erlenmeyerkolben wird noch etwas Wasserstoffperoxid-Lösung (1 mL, w=15%) zugegeben. Anschließend werden die Erlenmeyerkolben mit je einem Luftballon verschlossen und 20-30 min bei 25°C stehen gelassen.

Beobachtung: Nach einigen Minuten bläht sich nur der Ballon auf, der auf dem Erlenmeyerkolben mit dem Hemmstoff-freien Glukose/Hefe-Substrat sitzt. Der Ballon auf der Hemmstoff-haltigen Probe bleibt schlaff (Abb. 5).

Auswertung: Die Hefezellen führen zur Gärung von Glukose zu Kohlenstoffdioxid, das im Ballon aufgefangen wird. Sind Hemmstoffe vorhanden (hier: Wasserstoffperoxid, alternativ auch Phenol),

wird das Wachstum der Hefezellen unterdrückt und die Gasbildung bleibt aus. Auch dieses Experiment zeigt einfach und anschaulich die antiseptische Wirkung des von *Plea leachi* produzierten Metathorakal-Sekrets.

Abb. 5: Hemmung von Hefezellen mit Wasserstoffperoxid-Lösung: Wässriges Hefe/Glukose-Substrat (links), wässriges Hefe/Glukose-Substrat mit Wasserstoffperoxid versetzt (rechts)

Zusammenfassung

Die entwickelten und hier aufgeführten Experimente stellen einen Beitrag dar, um Forschungsergebnisse aus dem Bereich der Chemischen Ökologie für die Aus-, Fort- und Weiterbildung im Bildungssektor bereit zu stellen.

Hinweis: Die Sicherheitsbestimmungen im Umgang mit Gefahrstoffen (*) sind einzuhalten.

Literatur

Aldrich, J. R. (1988): Chemical Ecology of the Heteroptera, Ann. Rev. Entomol. 1988, 33:211-238. Falbe, J. und Regitz, M. (Hrsg.) (1995): Römpp Chemie Lexikon. Bd. 4 M-Pk, Thieme Verlag, Stuttgart, New York, S. 3349.

Herriger, C., Schmitz, W., Zajonc, S. & Ducci, M. (2012): Eine "bärchenstarke" Reduktion. Die reduktive Spaltung von Azofarbstoffen. CHEMKON 19, 2, 59-66.

Kudlich, M. (1998): Der Abbau von Azofarbstoffen durch Mikroorganismen. Dissertation, Shaker Verlag, Aachen.

Kovac, D., Maschwitz, U. (1990): Secretion-grooming in aquatic beetles (Hydradephaga): a chemical protection against contamination of the hydrofuge respiratory region. Chemoecology 1 (1990), 131-138.

Maschwitz, U. (1967): Eine neuartige Form der Abwehr von Mikroorganismen bei Insekten. Naturwissenschaften 54, 649.

Maschwitz, U. (1968): Wehrdrüsen und Wehrverhalten bei Dytisiciden. Verh. Dtsch zool Ges, Zool Anz Suppl 32, 411-416.

Maschwitz, U. (1971): Wasserstoffperoxid als Antiseptikum bei einer Wasserwanze. Naturwissenschaften 58, 572.

Moeschlin, S.: Klinik und Therapie der Vergiftungen, 1986, Thieme Verlag.

Schildknecht, H. (1970): Die Wehrchemie von Land- und Wasserkäfern. Angew. Chem. 82,1,17-25.

Staddon, B. W. (1979): The scent glands of Heteroptera. Adv. Insect Physiol. 14: 351-418.

Sommerkurse für Umweltchemie und Umweltanalytik

Georg Kubschl & Lothar Täuscher 2

1 Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Str.2, 12489 Berlin, email: georg.kubsch@chemie.hu-berlin.de, 2 Institut für angewandte Gewässerökologie GmbH, Schlunkendorfer Str. 2e, 14554 Seddiner See, email: lothar.taeuscher@iag-gmbh.info

Keywords: Umweltbildung, Feldberger Seen, Weißer See, Gewässeranalytik, Langzeit-Monitoring

Einleitung

Seit 1995 finden die Sommerkurse für Umweltanalytik und Umweltchemie statt, in denen sich die Teilnehmer/Innen in einer der schönsten Landschaften Norddeutschlands, der Feldberger Seenlandschaft in Mecklenburg-Vorpommern, mit der Untersuchung geschichteter Süßwasserseen beschäftigen (Kauschka et al. 2000, Kubsch 2009). Diese Sommerworkshops werden in bewährter Zusammenarbeit mit der Technischen Universität Berlin, in persona Wolfgang Frenzel, der Institut für angewandte Gewässerökologie GmbH (IaG), in persona Lothar Täuscher, und der AG BONITO e.V., in persona Wolfgang M. Richter, als Gemeinschaftsveranstaltung unter Federführung der Humboldt-Universität zu Berlin, in persona Georg Kubsch, durchgeführt. In fruchtbarer Zusammenarbeit bringt jeder Mitwirkende seine Erfahrungen und Kompetenzen ein, so dass ein anspruchsvolles Programm angeboten werden kann. In den letzten Jahren haben sich auch Rainer Koschel, Peter Kasprzak und Jörg Gelbrecht als Gastdozenten vom Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB) mit einem Vortrag zur Gewässersanierung und – restaurierung beteiligt.

Der Schülersommerkurs in Berlin wird seit 1996 am Weißen See durchgeführt und ist insbesondere für Schülerinnen und Schüler aus Profil- und Leistungskursen Chemie und Biologie gedacht. In diesen Kursen soll das im Unterricht erworbene Wissen im Praktikum vertieft und ergänzt werden. Die Ergebnisse dieses Kurses, an dem ja nur maximal 3 Schülerinnen und Schüler einer Schule teilnehmen können, sollen dann im Unterricht möglichst mit dem gesamten Leistungskurs ausgewertet werden. Dieser Schülerkurs soll auch dazu beitragen, das Interesse an naturwissenschaftlichen Studienrichtungen zu festigen. Seit ca. 5 Jahren werden auch Projekttage Berliner Schulen unterstützt, wenn sie sich thematisch mit Gewässern beschäftigen.

Untersuchungsgebiet und Methoden

Die Feldberger Seenlandschaft (Mecklenburg-Vorpommern) bietet ideale Bedingungen für solche Sommerkurse. Hier gibt es viele sehr tiefe Seen mit unterschiedlicher Gewässergüte. Sie sind gut geeignet, um die Situation während der Sommerstagnation der Seen aufzeigen zu können. Während der Kurse werden der Feldberger Haussee, der Krüselinsee und der Schmale Luzin, manchmal auch der Scharteisen, untersucht (Tab. 1). Nach einführenden Vorträgen, in denen den Teilnehmer/Innen

grundlegendes Wissen zur Gewässeranalytik und zu den Analysenverfahren vermittelt wird, erfolgt die Beprobung der Seen in kleinen Gruppen. Jede Gruppe beprobt einen See. Dabei werden an der tiefsten Stelle das Sauerstoff- und Temperaturtiefenprofil und die Sichttiefe bestimmt und Wasserproben aus verschiedenen Tiefen sowie eine Sedimentprobe für die chemischen Untersuchungen selbst genommen. In den folgenden Tagen werden diese Proben von den jeweiligen Gruppen aufbereitet und mittels AAS, Inversvoltammetrie, Gaschromatographie, Ionenchromatographie, Photometrie, Fließinjektionsanalyse und durch verschiedene Titrationen auf die Gehalte an Nährstoffen, Härtebildnern, Schwermetallen, verschiedenen Anionen, Methan, Chlorophyll-a, BSB und CSB (Permanganatwert) untersucht (s. Akyürek et al.2013 und Tab. 2).

Neben physikalisch-chemischen Wasseruntersuchungen steht ein biologisch-ökologisches Gewässermonitoring auf dem Programm der Kurse. Den Teilnehmern/Innen wird das aquatische Ökosystem mit den abiotischen (Biotop: Stillgewässer - See, Weiher, Tümpel/Kolke, Teiche, Talsperren; Fließgewässer - Bach, Fluss, Strom, Graben, Kanal) und biotischen (Biozönose: Phytozönose - Makrophyten [Grundrasen, Tauchfluren, Schwebematten, Schwimmblattfluren, Schwimmdecken, Röhrichte/Rieder], Mikrophyten [Phytoplankton, Mikrophytobenthos], Mikrobozönose - Bakterien, Pilze; Zoozönose - Fische; Zooplankton; Zoobenthos) Komponenten vorgestellt und die Nutzung von Mikro- und Makrophyten, Bakterien, Pilzen und Tieren zur Bioindikation (Trophie, Saprobie, Salzgehalt, Temperatur, pH-Wert) aufgezeigt (s. Akyürek et al.2013, Täuscher 2012).

In den praktischen Beprobungen, Kartierungen und Bestimmungen stehen die Wasserpflanzen, die planktischen Mikroalgen und das Zooplankton des nährstoffarmen Krüselinsees und des nährstoffreichen Feldberger Haussees auf dem Programm.

Tab. 1: Seen in der Feldberger Seenlandschaft (BONITO e.V.) und der Weiße See in Berlin (SenStadtUm Berlin, 1991)

See	max. Tiefe [m]	mittlere Tiefe [m]	Oberfläche [m²]	Volumen [m³]	Höhe NN [m]
Schmaler Luzin	34	15,3	1341750	20581125	84,2
Feldberger Haussee	12	6,3	1300000	8152565	84,2
Krüselinsee	18	6,7	657500	4408850	74,5
Scharteisen	32	16,1	95000	1530000	86,4
Weißer See	10,6	4,3	83011	360606	41,7

Tab. 2: Analysenmethoden

Methode	Analytik
AAS	Ca, Mg, Fe
FIA	$\mathrm{NH_4}^+$
Photometrie	NH ₄ ⁺ , PO ₄ ³⁻ , TP, Chlorophyll-a
Inversvoltammetrie	Cd, Pb
Gaschromatographie	CH ₄
Ionenchromatographie	Cl ⁻ , NO ₂ ⁻ , NO ₃ ⁻ , PO ₄ ³⁻ , SO ₄ ²⁻
Titration	Gesamthärte, HCO ₃ , H ₂ S, Permanganatindex,
Elektrochemische Sensoren	BSB ₃ , Leitfähigkeit, pH-Wert, Redoxpotential, O ₂

Statistik und Untersuchungsergebnisse

Statistik

An den Sommerkursen nahmen hauptsächliche Studierende naturwissenschaftlicher Fachrichtungen, Chemie, Biologie, Geoökologie und Geographie, teil. Seltener waren auch Studierende der Pharmazie, Umwelttechnik, Biophysik, Geophysik, Mineralogie und Geologie und geisteswissenschaftlicher Studiengänge wie z.B. Germanistik, Musikwissenschaft, Philosophie und Theologie dabei. Die Kurse sind offen für alle Hochund Fachschulen und Universitäten. Die Teilnehmer/Innen kamen vorwiegend aus Berlin und Umgebung, aber auch aus Bremen, Greifswald und Halle/Saale.

Es gab neben den Schülerkursen am Weißen See auch Kurse am Krüselinsee, die von Biologieleistungskursen Berliner Gymnasien im Rahmen der Kursfahrten genutzt wurden. Die in Tabelle 3 angegebene Zahl für die Schüler/Innen beinhaltet beide Kurse. Lehrer/Innen waren nur bei den Krüselinsee-Kursen.

Tab.3: Teilnehmer/Innen-Statistik

Statusgruppe	Anzahl			
Schüler/Innen	376			
Studierende	341			
Lehrer/Innen	7			
Sonstige	6			
Projekttage in Schulen	12			

Physikalisch-chemische Parameter

In Tabelle 4 sind beispielhaft einige Untersuchungsergebnisse dargestellt. Tatsächlich wurden mehr Parameter und mindestens 3 – 4 Wasserproben aus verschiedenen Tiefen und das Sediment untersucht. Für die Studierenden bestand am Schluss des Kurses die Aufgabe, diese Messwerte für den von ihnen untersuchten See in einem Vortrag zu interpretieren. Anhand der Ergebnisse und der Sauerstoff- und Temperaturtiefenprofile lassen sich sehr schön viele Prozesse, die in den geschichteten Süßwasserseen ablaufen, aufzeigen und diskutieren.

Tab.4: Physikalisch-chemische Untersuchungsergebnisse 2012

Parameter/ Methoden		Scharteisen (September)		Krüselinsee (September)		Schmaler Luzin (September)		Weißer See (Anfang Juni)	
		0,2 m	31 m	0,2 m	17 m	0,2 m	32 m	0,3 m	9,5 m
Ca ²⁺	mg/L	17	47,5	30,3	49,0	41,3	48,6	91	107,5
Mg^{2+}	mg/L	2,25	2,75	7,25	7,25	8,75	9,25	16,5	17,5
Cl ⁻	mg/L	10,3	10,9	17,5	19,1	17,4	17,9	118,0	120,3
NO_3	mg/L	< 0,02	<0,02	< 0,02	<0,02	< 0,02	0,65	0,11	<0,02
o-PO ₄ ³⁻	mg/L	< 0,02	8,2	< 0,02	0,25	< 0,02	0,33	<0,02	0,6
SO_4^{2-}	mg/L	7,9	0,3	33,1	15,7	43,0	43,0	139	131
Sichttiefe	M	3,8		7,5		5,0		6,0	
pH-Wert		8,6	6,7	7,8	7,3	8,2	7,5	8,3	7,2
LF	mS/cm	0,15	0,38	0,19	0,3	0,31	0,34	0,92	1,0
HCO ₃	mmol/L	1,15	3,8	1,9	3,3	2,3	2,6	2,0	3,0
NH_4^+	mg/L	<0,1	13,9	<0,03	1,6	<0,03	0,035	<0,03	3,2
H_2S	mg/L		4		2		<0,5		3

Biologische Untersuchungsbefunde

In Tabelle 5 sind die Wasserpflanzen-Funde der Langzeit-Untersuchungen im Krüselinsee und im Feldberger Haussees zusammengefasst (nach Ergebnisberichte 1995-2012, Täuscher 2009a, b und zitierte Literatur). Dabei ist das Mittlere Nixkraut (*Najas marina* subspec. *intermedia*) ein Neufund für den nährstoffreichen Feldberger Haussee.

Ausgedehnte Armleuchteralgen-Grundrasen (*Chara-*, *Nitella-* und *Nitellopsis-*Taxa), Wasserschlauch-Schwebematten (*Utricularia vulgaris*), die das ganze Jahr untergetauchte Form der Krebsschere (*Stratiotes aloides* f. *submersa*) und das Vorkommen von *Ophrydium versatile* (Protozoa) auf und zwischen den Wasserpflanzen sind ein wichtiges Charakteristikum der nährstoffarmen Klarwasserverhältnisse im Krüselinsee. Auch Laichkraut-Bastarde (*Potamogeton x nerviger*, *Potamogeton x salicifolius*) konnten im Krüselinsee gefunden werden.

Wissenschaftsgeschichte und Langzeit-Untersuchungen

Die Gewässer spielen auch in der Wissenschaftsgeschichte der Limnologie eine große Rolle. So untersuchten z. B. August Thienemann als Nestor der Limnologie und sein Schüler Waldemar Ohle in den zwanziger und dreißiger Jahren des vergangen Jahrhunderts die Gewässer im Feldberger Raum (von Thienemann wurde die bis heute noch im Breiten Luzin lebende Tiefenmaräne – Coregonus albula lucinensis – für die Wissenschaft neu beschrieben). Von Dietrich Uhlmann (emeritierter Professor der Technischen Universität Dresden) liegt aus dem Jahr 1958 ein Gutachten zum Feldberger Haussee vor. Die an den Sommerworkshops beteiligte AG BONITO e.V. (s. Einleitung) untersucht die Gewässer der Feldberger Seenlandschaft seit über 50 Jahren. Vom Leibniz-Institut für Gewässerökologie und Binnenfischerei Stechlin-Neuglobsow und seinen Vorgängereinrichtungen (s. Täuscher 2009c) wird der Feldberger Haussee seit Anfang der achtziger Jahre des vergangenen Jahrhunderts intensiv untersucht, um durch Sanierungs- und Restaurierungsmaßnahmen eine Verbesserung der Wasserqualität zu bewirken (s. Kasprzak 2009, Kasprzak et al. 2013a, b).

Tab. 5: Untergetauchte und schwimmende Wasserpflanzen im Krüselinsee und im Feldberger Haussee

wissenschaftliche Namen	deutsche Namen	Krüselinsee	Feldberger	
			Haussee	
Charales	Armleuchteralgen			
Chara aspera	Raue Armleuchteralge	+		
Chara contraria	Gegensätzliche Armleuchteralge	+	+	
Chara filiformis	Faden-Armleuchteralge	+		
Chara globularis	Zerbrechliche Armleuchteralge	+	+	
Chara intermedia	Kurzstachlige Armleuchteralge	+		
Chara polyacantha	Vielstachlige Armleuchteralge	+		
Chara rudis	Furchenstachlige Armleuchteralge	+		
Chara tomentosa	Hornblättrige Armleuchteralge	+		
Chara virgata	Feine Armleuchteralge	+		
Nitella flexilis	Biegsame Glanzleuchteralge	+		
Nitella mucronata	Stachelspitzige Glanzleuchteralge	+		
Nitellopsis obtusa	Stern-Glanzleuchteralge	+	+	
Xanthophyceae	Gelbgrünalgen			
Vaucheria dichotoma	Schlauchalge	+		
Bryophyta	Moose			
Fontinalis antipyretica	Quellmoos	+		
Spermatophyta	Blütenpflanzen			
Ceratophyllum demersum	Gemeines Hornblatt	+	+	

Ceratophyllum submersum	Zartes Hornblatt		+
Elodea canadensis	Kanadische Wasserpest	+	+
Myriophyllum spicatum	Ähren-Tausendblatt	+	+
Najas marina ssp. intermedia	Mittleres Nixkraut	+	+
Nuphar lutea	Gelbe Teichrose	+	+
Nymphaea alba	Weiße Seerose	+	+
Persicaria amphibia	Wasser-Ampfer	+	+
Potamogeton berchtoldii	Berchtholds Laichkraut	+	
Potamogeton compressus	Flachstängliches Laichkraut	+	
Potamogeton crispus	Krauses Laichkraut	+	+
Potamogeton friesii	Stachelspitziges Laichkraut	+	+
Potamogeton lucens	Spiegelndes Laichkraut	+	+
Potamogeton natans	Schwimmendes Laichkraut	+	
Potamogeton obtusifolius	Stumpfblättriges Laichkraut	+	
Potamogeton pectinatus	Kamm-Laichkraut	+	+
Potamogeton perfoliatus	Durchwachsenes Laichkraut	+	+
Potamogeton praelongus	Gestrecktes Laichkraut	+	
Potamogeton pusillus	Zwerg-Laichkraut	+	+
Potamogetom trichoides	Haarblättriges Laichkraut		+
Ranunculus circinatus	Spreizender Wasserhahnenfuß	+	+
Stratiotes aloides f. submersa	untergetauchte Form der Krebsschere	+	
Utricularia vulgaris	Gemeiner Wasserschlauch	+	
Zannichellia palustris	Sumpf-Teichfaden		+

Nächste Termine

Schülerkurs in Berlin: 25.06.2014 bis 27.06.2014

Kurse für Studierende am Krüselinsee: 14.09.2014 bis 19.09.2014

21.09.2014 bis 26.09.2014

Danksagung

Die Sommerkurse werden von der GDCh, Wasserchemische Gesellschaft, und von der DGL e.V. finanziell unterstützt. Dadurch können die Kosten für die Teilnehmer/Innen niedrig gehalten werden. Viele Dank dafür.

Literatur

AG Bonito (1976): Luzinreport.

Akyürek, Y., I. Fabian, W. Frenzel, G. Kauschka, G. Kubsch & L. Täuscher (2013): 17. Feldberger Sommerworkshop zur Umweltanalytik und Umweltchemie. - Humboldt-Universität zu Berlin - Institut für Chemie / Analytik und Umweltchemie -, Technische Universität Berlin - Institut für Technischen Umweltschutz -, Institut für angewandte Gewässerökologie GmbH, Bonito e.V.: 74 S..

http://www.linscheidlab.de/projects/LinscheidLab/static/custom/file/Skript2012.pdf

Ergebnisberichte: Berichte vom Feldberger Sommerworkshop für Umweltanalytik und Umweltchemie am Krüselinsee und vom Schülersommerkurs "Umweltanalytik und Umweltchemie" in Berlin (1995-2012). – Humboldt-Universität zu Berlin / Technische Universität Berlin / Institut für angewandte Gewässerökologie GmbH Seddiner See / BONITO e.V.

 $http://www.linscheidlab.de/LinscheidLab_Ergebnisberichte_en.html\\$

Kasprzak, P. (2009): Die limnologische Entwicklung der oberen Feldberger Seen. - In: Borrmann, K. et al. (eds.): Feldberg-Serrahner Naturparkgeschichte(n). Aktivitäten von Forschern und Vereinen zum

- Schutz der Wälder und Gewässer in der Feldberger Seenlandschaft, einschließlich Müritz-NP-Teil Serrahn. Galenbeck: 131-138.
- Kasprzak, P., G. Wauer & T. Gonsiorczyk (2013a): Sanierung und Restaurierung des Feldberger Haussees 1978-2012: Was lange währt wird endlich gut? Vortrag & Abstract: Leibniz-Institut für Gewässerökologie und Binnenfischerei, Workshop Seentherapie Erfahrungen und neue Herausforderungen, Arendsee (Altmark): 18.-21.03.2013.
- Kasprzak, P., G. Wauer, T. Gonsiorczyk & M. Hupfer (2013b): Restaurierung des dimiktischen, eutrophen Feldberger Haussees (Mecklenburg-Vorpommern) mit einer relativ niedrigen Dosis von Polyaluminiumchlorid Gründe, Ergebnisse, Probleme. Deutschen Gesellschaft für Limnologie (DGL)-Abstractband Jahrestagung 2013 (Potsdam): 120.
- Kauschka, G., G. Kubsch, W. M. Richter & L. Täuscher (2000): Umweltanalytik und Umweltchemie: Sommerkurse. Humboldt-Spektrum 7(1): 58-61.
- Kubsch, G. (2009): Sommerkurse in der Krüseliner Mühle In: Borrmann, K. et al. (eds.): Feldberg-Serrahner Naturparkgeschichte(n). Aktivitäten von Forschern und Vereinen zum Schutz der Wälder und Gewässer in der Feldberger Seenlandschaft, einschließlich Müritz-NP-Teil Serrahn. Galenbeck: 88-91.
- SenStadtUM Berlin (Hrsg.) (1991): Seen Berlins: Der Weiße See. Umwelt und Naturschutz für Berliner Gewässer, Heft 11.
- Täuscher, L. (2009a): 10 Jahre biologisch-ökologische Gewässeruntersuchungen im mesotrophen Krüselinsee und im eutrophen Feldberger Haussee im Feldberger Seengebiet (Mecklenburg-Vorpommern, Deutschland). Rostock. Meeresbiolog. Beitr. 22: 65-72.
- http://www.biologie.uni-rostock.de/oekologie/RMB.htm#22
- Täuscher, L. (2009b): Wasserpflanzen im Klarwasser von Krüselin- und Dreetzsee. In: Borrmann, K. et al. (eds.): Feldberg-Serrahner Naturparkgeschichte(n). Aktivitäten von Forschern und Vereinen zum Schutz der Wälder und Gewässer in der Feldberger Seenlandschaft, einschließlich Müritz-NP-Teil Serrahn. Galenbeck: 149-151.
- Täuscher, L. (2009c): 50 Jahre limnologische Forschung am Stechlinsee. Naturschutz und Landschaftspflege in Brandenburg 18: 54-55.
- Täuscher, L. (2012): Umweltbildung für Schüler, Studenten und in der Erwachsenenqualifizierung vor und nach der "Wende" (1979-2012). Studienarchiv Umweltgeschichte 17 : 67-76.
- http://www.iugr.hs-nb.de/fileadmin/IUGR/Publikationen/Studienarchiv_Umweltgeschichte/Stug17_A5_green.pdf

Umweltbildung interdisziplinär – Modellexperimente zur Gewässerversauerung (Experimentalvortrag)

Wolfgang Schmitz

Pädagogische Hochschule Karlsruhe, Institut für Chemie, Bismarckstraße 10, 76133 Karlsruhe, wolfgang.schmitz@ph-karlsruhe.de

Keywords: Gewässerversauerung, chemische Veränderungen, Mobilisierung, Akkumulation, Modellexperimente, Umweltbildung

Einleitung

Die Versauerung insbesondere von Seen des Kanadischen und Fennoskandischen Schildes ist seit Jahren Gegenstand der interdisziplinären Forschung. Eine besondere Rolle spielen rekultivierte Braunkohletagebauseen, die durch in tertiären Sanden vorkommendes Pyrit (FeS₂) stark versauerten. Im ersten Moment denken viele bei versauerten Gewässern oder sauren Seen an Wasser mit lediglich einem niedrigen pH-Wert. Doch in solchen Gewässersystemen laufen eine Reihe von chemischen Folgereaktionen ab, die zu weitreichenden chemischen Veränderungen mit einschneidenden Wirkungen auf Flora und Fauna des Gewässers führen.

Ursachen und Folgen der Versauerung

Die wesentlichen chemischen Vorgänge, die zu Gewässerversauerungen führen, sind in Tab. 1 zusammengefasst. Die in diesen versauerten Gewässersystemen ablaufenden chemischen Folgereaktionen mit Mobilisierungs- und Akkumulationsvorgängen von Metallionen, die zu weitreichenden chemischen Veränderungen führen, sind in Tab. 2 dargestellt.

Tab. 1: Ursachen der Gewässerversauerung (vgl. Bertills & Hanneberg 1995)

Versauerung durch	Reaktionsgleichung	Modellexp.
Saure Niederschläge aufgrund atmosphärischer Einträge von	$SO_2 + 0.5 O_2 + H_2O \rightarrow 2H^+ + SO_4^{2-}$	V1
Schwefeldioxid und Stickstoffdioxid	$2NO_2 + H_2O \rightarrow HNO_2 + HNO_3$	
Aufnahme von Ionen durch Pflanzenwurzeln (vgl. Löser 2005)	$Ca^{2+} + \{H_2Root\} \rightarrow \{Ca\text{-}Root\} + 2H^+$	
Bildung von Humin- und Fulvosäuren	$M^{2+} + H_2Hum \rightarrow MHum \downarrow + 2H^+$	V2
Ionenaustauschreaktionen im Boden mit anschließender	$2M^{2+} + \{Al\text{-Soil-H}\} \rightarrow \{M_2\text{-Soil}\} + Al^{3+} + H^+$	V4-6
Mobilisierung von Aluminium(III)- und Eisen(III)-Ionen		
Oxidation von Sulfiden im Sediment	$FeS_2 + 3.75 O_2 + 3.5 H_2O \rightarrow Fe(OH)_3 +$	V3
	$2SO_4^{2-} + 4H^+$	
Nitrifikation (vgl. Westermann& Schmitz 2014)	$NH_4^+ + 2O_2 \rightarrow NO_3^- + H_2O + 2H^+$	

Tab. 2: Chemische Folgereaktionen der Gewässerversauerung (vgl. Bertills & Hanneberg 1995)

Folgereaktion	Wirkung	Modell- Exp.
Zunahme der Konzentration von $c(Al^{3+})$	Schädigung von Flora und Fauna (vgl. Löser 2005, de Jong 2007)	V6
Auswaschung von Fe ³⁺ -Ionen bei hohen Säureeinträgen	Gelbbraune Niederschläge am Gewässergrund	V4, V5
Mobilisierung von Schwermetall-Ionen	Akkumulation in der Nahrungskette	V4-6
Schädigung des Phytoplanktons	immense Auswirkungen auf Nahrungsketten	
Ausfällung von Metall-Ionen mit Huminsäuren (DOC)	Akkumulation von Metall-Ionen	V7
Phosphatfällung z.B. als AlPO ₄ bzw. FePO ₄ durch Zunahme von $c(Al^{3+})$ bzw. $c(Fe^{3+})$	Nährstoffmangel	V8

Modellexperimente

Die zu dieser Thematik entwickelten Modellexperimente (Tab. 1-4) zeigen anschaulich die Prozesse, die in einem versauerten Gewässer ablaufen (Schmitz 2012, Westermann & Schmitz 2013, 2014). Sie stellen einen Beitrag dar, um aktuelle Ergebnisse der Umweltforschung für den Bildungssektor zur Verfügung zu stellen.

Tab. 3: Versuchsbeschreibungen (Schmitz 2012, Westermann & Schmitz 2013, 2014), Hinweis: Die Sicherheitsbestimmungen im Umgang mit Gefahrstoffen sind zu beachten!

V1 Modellexperimente zur Versauerung einer Wasserprobe durch sauren Regen

Nach den im Labor üblichen Darstellungsverfahren (beispielsweise Philipp 1993, Obendrauf 1996) werden Schwefeldioxid bzw. Stickstoffdioxid synthetisiert und in Wasser eingeleitet, das mit Universalindikator angefärbt wurde.

V2 Modellexperimente zur Versauerung einer Wasserprobe durch Huminstoffe

Drei Erlenzapfen werden in einem Schnappdeckelglas mit Wasser versetzt und geschüttelt. Nach wenigen Minuten wird mit einer pH-Elektrode der pH-Wert geprüft.

V3 Modellexperimente zur Versauerung von Braunkohletagebauseen

Etwas Pyrit wird in einem Schnappdeckelgläschen mit 5 mL Wasser versetzt. Nach dem Schütteln wird mit einer pH-Elektrode der pH-Wert geprüft.

V4 Modellexperiment zur Mobilisierung von Metallionen

Frisch gefälltes Eisen(III)hydroxid wird mit Sand vermischt. Zwei Reagenzgläser werden ca. 1cm hoch mit diesem Sand befüllt. Mithilfe eines Glasstabes wird auf den so behandelten Sand jeweils etwas Watte eingeführt. Die Reagenzglaswand sollte über der Watteschicht sauber sein. Dann werden zu der einen Probe 5 mL Wasser gegeben, zu der anderen 5 mL Salzsäure (c= 0.1 mol/L).

V5 Modellexperiment zur Mobilisierung von Fe³⁺-Ionen in versauerten Gewässern: Zunächst wird eine Eisen(III)nitrat-Lösung hergestellt, indem 72 mg Eisen(III)nitrat-nonahydrat in 1L dest. Wasser gelöst werden. Neun Reagenzgläser (R0-R8) werden mit je 5g Sand versetzt. Zu jedem Reagenzglas wird 1mL der Eisennitrat-Lösung gegeben. Anschließend fällt man in jedem Reagenzglas mit je 0,5 mL Natronlauge (c=1 mol/L) Eisenhydroxid aus und gibt zur Vermeidung von Verwirbelungen auf den Sand einen kleinen Wattebausch. Die Reagenzgläser werden wie folgt mit je 5 mL der folgenden Stoffe beschickt:

 $\textbf{R0} \hspace{0.1cm} \text{HCl}(aq), pH=0 \hspace{0.1cm} \textbf{R1} \hspace{0.1cm} \text{HCl}(aq), pH=1 \hspace{0.1cm} \textbf{R2} \hspace{0.1cm} \text{HCl}(aq), pH=2 \hspace{0.1cm} \textbf{R3} \hspace{0.1cm} \text{HCl}(aq), pH=3 \hspace{0.1cm} \textbf{R4} \hspace{0.1cm} \text{HCl}(aq), pH=4 \hspace{0.1cm} \text{HCl}(aq), pH=3 \hspace{0.1cm} \textbf{R4} \hspace{0.1cm} \text{HCl}(aq), pH=4 \hspace{0.1cm} \text{HC$

R5 HCl(aq), pH=5 **R6** HCl(aq), pH=6 **R7** H₂O, pH=7 **R8** NaHCO₃(aq), pH=8

Nach 24h wird jeweils von der überstehenden Lösung eine 1mL-Probe abgenommen und mit 4 mL dest. Wasser auf 5 mL aufgefüllt. Die Ermittlung der Eisen-Ionen-Konzentration erfolgt colorimetrisch mit einem Testsatz der Fa. Merck (Aquamerck-Eisen-Test 1.14660.0001).

V6 Modellexperiment zur Mobilisierung von Al³+-Ionen in versauerten Gewässern: In neun Reagenzgläsern (R0-R8) wird jeweils Aluminiumhydroxid durch Versetzen einer Kalium-Aluminiumsulfat-Lösung, mit β(Al³+)= 250 mg/L, mit 3 Tropfen Ammoniak-Lösung, c= 2 mol/L, gefällt sowie mit 10g Sand gefüllt. Zur Vermeidung von Verwirbelungen gibt man auf den Sand einen kleinen Wattebausch. Die Reagenzgläser werden wie folgt mit je 5 mL der folgenden Stoffe beschickt:

R0 HCl(aq), pH=0 **R1** HCl(aq), pH=1 **R2** HCl(aq), pH=2 **R3** HCl(aq), pH=3 **R4** HCl(aq), pH=4

R5 HCl(aq), pH=5 **R6** HCl(aq), pH=6 **R7** H₂O, pH=7 **R8** NaHCO₃(aq), pH=8

Nach 24h werden von der überstehenden Lösung von jedem Reagenzglas 5 mL Flüssigkeit abgenommen und in ein separates Reagenzglas gegeben. Mit Hilfe des Merckoquant-Aluminium-Schnelltests der Fa. Merck wird die Aluminium-Ionen-Konzentration ermittelt.

V7 Modellexperimente zur Akkumulation von Metallionen mit Huminsäuren: Aus einer Eisen(III)-chlorid-Lösung (w=2%) werden mit einer wässrigen Lösung von Huminsäure-Natriumsalz (w=2%) Fe³⁺-Ionen als Eisenhumat ausgefällt; der Nachweis der Fe³⁺-Ionen erfolgt mit Hilfe einer Thiocyanat-Lösung als [Fe(SCN)₃]-Komplex, vor und nach der Huminsäure-Fällung.

V8 Modellexperimente zur Akkumulation von Metallionen bzw. Phosphationen: Aus wässrigen Lösungen (jeweils *w*=5%) von Eisen(III)chlorid bzw. Kalium-Aluminiumsulfat werden mit einer Natriumphosphat-Lösung Phosphat-Ionen als AlPO₄ bzw. FePO₄ ausgefällt.

Tab. 4: Auswertung der Modellexperimente V1-V8

	Beobachtungen/Ergebnis	Auswertung
V1	Nach Einleiten der Gase Schwefeldioxid bzw. Stickstoffdioxid schlägt der Universalindikator in Abhängigkeit von der eingeleiteten Gasmenge von grün über gelb bis orange-rot um. Es werden bereits nach kurzer Zeit pH-Werte bis pH<3 gemessen.	Die Gase Schwefeldioxid SO_2 und NO_2 sind Säureanhydride (Lewis-Säuren). In wässriger Lösung werden durch Lewis-Säure-Base-Reaktionen die Säuren schweflige Säure H_2SO_3 bzw. durch Disproportionierung salpetrige Säure HNO_2 und Salpetersäure HNO_3 gebildet. Diese Säuren werden durch den Universalindikator angezeigt. Der pH-Wert der wässrigen Lösung sinkt.
		$SO_2 + H_2O \rightarrow H_2SO_3$
		$2NO_2 + H_2O \rightarrow HNO_2 + HNO_3$
		$H_2SO_3 + H_2O \rightarrow H_3O^+ + HSO_3^-$
		$\text{HNO}_2 + \text{H}_2\text{O} \rightarrow \text{H}_3\text{O}^+ + \text{NO}_2^-$
		$\text{HNO}_3 + \text{H}_2\text{O} \rightarrow \text{H}_3\text{O}^+ + \text{NO}_3^-$
V2	Nach wenigen Minuten färbt sich die Lösung zunehmend braun. Es werden bereits nach wenigen Minuten pH-Werte bis pH<3 gemessen.	In wässriger Lösung werden aus den Erlenzapfen Huminstoffe (u.a. Fulvosäuren) extrahiert. In Abhängigkeit von der Konzentration sinkt der pH-Wert der wässrigen Lösung.
V3	Bereits nach wenigen Minuten ist eine Absenkung des pH-Wertes festzustellen. Nach etwa einer halben Stunde können Werte um pH=2,3 gemessen werden.	Die Oxidation von Pyrit in Gegenwart von Sauerstoff findet in zwei Prozessen statt (vgl. Bertills & Hanneberg 1995). Zum einen die Oxidation von Disulfid zu Sulfat, zum anderen die Oxidation des Eisen(II) zu Eisen(III). Protonen werden im Überschuss gebildet, was zur Versauerung führt.
		$FeS_2 + 3.75 O_2 + 3.5 H_2O$
		\rightarrow Fe(OH) ₃ + 2SO ₄ ²⁻ + 4H ⁺
V4	Einige Minuten nach Zugabe der verdünnten Salzsäure- Lösung (pH=1) färbt sich die über dem Sand stehende Lösung hellgelb. Gleichzeitig entfärbt sich der Sand. Wird Wasser (pH=7) auf die mit Eisen(III)hydroxid ver- mischte rostbraune Sandprobe gegeben, finden keine Farbver- änderungen statt.	Im sauren Medium (pH=1) werden Fe ³⁺ - Ionen gebildet. Das schwerlösliche Ei- sen(III)hydroxid bzw. nach Alterung gebilde- te Eisen(III)oxidhydroxid wird aufgelöst. Die Eisen(III)-Ionen werden mobilisiert. $Fe(OH)_3 + 3H_3O^+ \rightarrow [Fe(H_2O)_6]^{3+}$ $FeO(OH) + H_2O + 3H_3O^+ \rightarrow [Fe(H_2O)_6]^{3+}$

V5

 ${\sf Tabelle~3.1~Halb-quantitative~Auswertung~der~Messergebnisse~mit~Hilfe~des~Merckoquant-Eisen-Tests.}$

pH-Wert	8	7	6	5	4	3	2	1	0
Eisen(II)- Konzentration in mg/L Fe	0	0	0	0,05	0,1	0,4	0,6	0,8	1,0

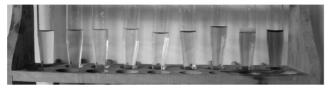


Abbildung 3.2. Halb-quantitative Auswertung des Fisen(III)gehalts der überstehenden Lösung

Abbildung 3.3 Farbskala¹⁵ des Aquamerck-Eisen-Tests zur Ermittlung der Eisen-Konzentration.

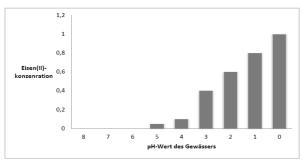


Abbildung 3.4 Eisen(II)-Konzentration in Abhängigkeit des pH-Wertes.

Zunächst wird in allen Sandproben Eisen(III)hydroxid gefällt:

$$Fe^{3+} + 3 OH^{-} \rightarrow Fe(OH)_{3}$$

Die Konzentration ist so gewählt, dass sie im Messbereich des colorimetrischen Schnelltests liegt (1 mg/L).

In Gegenwart von Säure löst sich der Eisen(III)hydroxid-Niederschlag in Abhängigkeit von Löslichkeitsprodukt und Komplexbildungskonstante auf:

$Fe(OH)_3 + 3 H_3O^+ \leftrightarrows [Fe(OH_2)_6]^{3+}$

Je höher die Oxoniumionenkonzentration ist, umso mehr ist das Gleichgewicht nach rechts verschoben; d.h., Eisen(III)-Ionen werden zunehmend mobil. Die Grafik zeigt deutlich die zunehmende Mobilisierung unterhalb pH=4.

(aus: Westermann 2011)

V6

Tabelle 3.3 Halb-quantitative Auswertung der Messergebnisse mit Hilfe des Merckoquant-Aluminium Tests.

pH-Wert	8	7	6	5	4	3	2	1	0
Aluminium(III)-lonen- Konzentration in mg/L Al	0-10	0-10	10-25	10	25-50	25-50	50	50	100

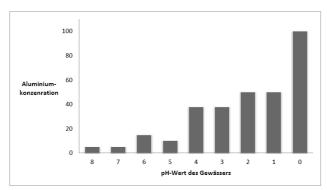


Abbildung 3.8 Aluminium-Konzentration in Abhängigkeit des pH-Wertes.

(aus: Westermann 2011)

Zunächst wird in allen Sandproben Aluminium(III)hydroxid gefällt:

$$Al^{3+} + 3 OH^{-} \rightarrow Al(OH)_{3}$$

Die Konzentration ist so gewählt, dass sie im Messbereich des colorimetrischen Schnelltests liegt. In Gegenwart von Säure löst sich der Aluminium(III)hydroxid-Niederschlag in Abhängigkeit von Löslichkeitsprodukt und Komplexbildungskonstante auf:

$$Al(OH)_3 + 3 H_3O^+ \leftrightarrows [Al(OH_2)_6]^{3+}$$

bzw.
$$Al(OH)_3 \leftrightarrows [Al(OH)_2(OH_2)_4]^+ \leftrightarrows [Al(OH)(OH_2)_5]^{2+} \leftrightarrows [Al(OH_2)_6]^{3+}$$

Je höher die Oxonium-Ionenkonzentration ist, umso mehr ist das Gleichgewicht nach rechts verschoben; d.h., Aluminium(III)-Ionen werden zunehmend mobil. Die Grafik zeigt deutlich die zunehmende Mobilisierung unterhalb pH=4.

V7	Nach Zugabe der Huminsäure-Natriumsalz-Lösung fällt ein brauner, schwerlöslicher Niederschlag aus. Nach seiner Sedimentation ist die überstehende Lösung fast farblos. Diese überstehende Lösung färbt sich mit Thiocyanat orangerot, während die gelbe Eisenchlorid-Lösung von Thiocyanat tiefrot gefärbt wird.	Eisen(III)-Ionen werden durch die Huminsäure-Natriumsalz-Lösung komplexiert. Es bilden sich schwerlösliche Eisenhumat-Komplexe. Fe³+ + HumHx-→ [FeHum]³-x + H⁺ Der empfindliche Nachweis auf Eisen(III)-Ionen mit Thiocyanat führt zur Bildung eines lediglich orangeroten Eisen-Thiocyanat-Komplexes, während Eisen(III)chlorid-Lösung durch Gleichgewichtsverschiebung einen tiefrot gefärbten Eisen-Thiocyanat-Komplex bildet: [Fe(H₂O)₀]³+ + 3 SCN⁻ □ [Fe(SCN)₃(H₂O)₃] + 3 H₂O
V8	$FeCl_3$ -Lösung: Es fällt ein braungelber Niederschlag aus. $KAl(SO_4)_2$ -Lösung: Es fällt ein farbloser Niederschlag aus.	Es bilden sich die schwerlöslichen Nieder- schläge von Eisen(III)- bzw. Alumini- um(III)phosphat. M³+ + PO₄³- → MPO₄ (M=Fe, Al)

Diskussion der Modellexperimente

Die Entstehung des "sauren Regens" wird anschaulich in Modellexperiment V1 dargestellt. Die gebildeten Säuren führen zu einer Versauerung einer Wasserprobe.

Modellexperiment **V2** zeigt die natürliche Bildung von Huminstoffen und deren Eintrag in Gewässersysteme. Damit werden natürliche Versauerungsprozesse und auch die Erhöhung des DOC-Wertes demonstriert.

Modellversuch V3 veranschaulicht die Pyrit-Verwitterung in Gegenwart von Sauerstoff. Dabei werden Eisen(III) und Schwefelsäure gebildet. Diese Reaktion ist besonders in rekultivierten Braunkohletagebauseen von Bedeutung. Diese Seen zeigen eine sehr starke Versauerung.

Modellexperiment V4 zeigt die Mobilisierung von Eisen(III)-Ionen aus einer "Boden"-Probe im sauren Medium. Die überstehende Lösung ist durch die Eisen(III)-Ionen gelb gefärbt. Im Neutralen wird Eisen nicht mobilisiert, was an der verbraunten Sandprobe und der klaren, überstehenden wässrigen Lösung zu erkennen ist (Schmitz 1991, 1992, 2012).

Die entwickelten Modellexperimente zeigen die Chemodynamik von Metall-Ionen (hier: Fe³⁺ und Al³⁺) auf. Dabei werden Mobilisations- bzw. Akkumulationsvorgänge in der Natur verdeutlicht. **V5** und **V6** sind halbquantitativ konzipiert. Zunächst werden Eisen- bzw. Aluminium-Ionen durch Hydroxidfällung im Modell-"Sediment"-Boden in Form von Metallhydroxiden immobilisiert (Fällung von Eisen(III)- bzw. Aluminium(III)hydroxid). Die Veränderung des pH-Wertes durch Zugabe von unterschiedlich konzentrierten sauren bzw. schwach alkalischen Lösungen führt in Abhängigkeit der beteiligten Gleichgewichtsreaktionen zu einer Mobilisierung der Metallionen. Mit diesen

Modell-Versuchen lassen sich die limnochemischen Vorgänge in der Natur anschaulich darstellen (Schmitz 1991, 1992, Westermann & Schmitz 2013, 2014).

V7 verdeutlicht die Chemodynamik von Fe³⁺ in Gegenwart von Huminstoffen. Metall-Ionen bilden mit Huminsäuren schwerlösliche Metallhumate. Durch die Komplexierung und Ausfällung (Akkumulation/Immobilisierung) wird die Konzentration der im Wasser gelösten Metall-Ionen erniedrigt. Durch Änderung des Wasserchemismus können die Metall-Ionen wieder mobilisiert werden. Problematisch ist dies in Ökosystemen in Bezug auf Schwermetall-Ionen. Zur Veranschaulichung dieser Phänomene wurde eine möglichst einfache Nachweisreaktion eingesetzt.

V8 verdeutlicht modellhaft, dass aufgrund von Versauerungsprozessen in Gewässersystemen mobilisierte Eisen(III)- bzw. Aluminium(III)-Ionen zu einer Phosphat-Fällung führen (Immobilisierung/Akkumulation von Phosphat-Ionen). Diese Phosphat-Ionen stehen als Nährstoffe im Gewässerkörper nicht mehr zur Verfügung und führen z.B. in einem See zu einem verringerten Algenwachstum. Daher sind u.a. saure Seen so klar.

Zusammenfassung

Die im Experimentalvortrag vorgestellten Modellexperimente zur interdisziplinären Thematik "Chemodynamik von Metall-Ionen im Zusammenhang mit der Gewässerversauerung" stellen einen Beitrag dar, um aktuelle Ergebnisse der Umweltforschung mit möglichst einfachen Mitteln für den Fort- und Weiterbildungsbereich im Bildungssektor didaktisch aufbereitet zur Verfügung zu stellen.

Literatur

- Bertills, U. und Hanneberg, P. (1995): Acidification in Sweden. Swedish Environmental Protection Agency, Stockholm.
- de Jong, H. (2007): Auswirkungen der Gewässerversauerung auf Flohkrebse. Von experimentellen Untersuchungen zum anschaulichen Unterrichtskonzept. Wissenschaftliche Hausarbeit, Pädagogische Hochschule Karlsruhe (unveröffentlicht), 73 S.
- Löser, S. (2005): Gewässerversauerung Konzeption für den fächerübergreifenden Unterricht. Wissenschaftliche Hausarbeit, Pädagogische Hochschule Karlsruhe (unveröffentlicht), 112 S.
- Obendrauf, V. (1996): Experimente mit Gasen im Minimaßstab, Chemie in unserer Zeit 30 (3), 118-125.
- Philipp, E. (1993): Experimente zur Untersuchung der Umwelt. Chemisch-biologische Experimente für die Sekundarstufe I und II. Bayrischer Schulbuch-Verlag, München, 4. Auflage, 240 S.
- Schmitz, W. (1991): La Matière "Analyse de L'Environnement" dans les Cours de Chimie de L'Enseignement Supérieur dans les Lycées démontrée à L'Exemple de la Chemodynamique des Iones Métalliques dans la Terre. In: Baldwin, J.H. (Hrsg.): Confronting Environmental Challenges in a Changing World Selected Papers from the 20th. Annual Conference of the North American Association for Environmental Education 1991 (St. Paul, Minnesota, USA), NAAEE, Troy, OH, USA: 174-180.
- Schmitz, W. (1992): La Matière "Analyse de L'Environnement" dans les Cours de Chimie de L'Enseignement Supérieur dans les Lycées démontrée à L'Exemple de la Chemodynamique des Iones Métalliques dans la Terre. In : Le bulletin de CIFEC (Centre International Francophone pour L'Education en Chimie), Actes Volume II 1992 (Montpellier, France) : 182-186.
- Schmitz, W. (2012): "Mit Chemie gegen saure Seen: Modellexperimente zur Gewässerversauerung", Deutsche Gesellschaft für Limnologie (DGL), Erweiterte Zusammenfassung der Jahrestagung 2011 (Weihenstephan), Hardegsen 2012, S. 370-374.
- Westermann, S., Schmitz, W. (2013): "Gewässerversauerung viel mehr als nur ein niedriger pH-Wert, Deutsche Gesellschaft für Limnologie (DGL), Erweiterte Zusammenfassung der Jahrestagung 2012 (Koblenz), Hardegsen 2013, S. 520-524.
- Westermann, S., Schmitz, W. (2014): Modellexperimente zur Gewässerversauerung, Praxis der Naturwissenschaften Chemie in der Schule, Aulis-Verlag, Halbergmoos (im Druck).
- Westermann, S. (2011): Gewässerversauerung Konzeption von Modellexperimenten zur aktiven Umwelterziehung im naturwissenschaftlichen Unterricht. Wissenschaftliche Hausarbeit, Pädagogische Hochschule Karlsruhe (unveröffentlicht), 132 S.

WASSERRAHMENRICHTLINIE UND GEWÄSSERMANAGEMENT

CRON, N., TH. ZUMBROICH & I. QUICK: Bewertung und Prognose des ökologischen Potentials von Bundeswasserstraßen – Gewässerkategorien, Gewässertypen und Ausweisungsgründe nach Wasserrahmenrichtlinie

DAHM, V. & D. HERING: Where the wild things are – Konzept zur Ermittlung von Wiederbesiedlungsquellen im Einzugsgebiet

FRANK, C., R. MÜHLBERGER, U. ARAUNER & H. FRANK: Twenty years of rehabilitation and management of a gravel pit lake in the vicinity of Ingolstadt, South Germany

GONSIORCZYK, TH., P. CASPER & P. KASPRZAK: Auswirkungen künstlicher und natürlicher Nährstoff- und Kalzitfällungen auf die Sedimentbeschaffenheit

OLDORFF, S., E. KIEL, V. KRAUTKRÄMER, K. VAN DE WEYER, J. MÄHLMANN, R. KÖHLER, J. KÖHLER, S. BERNHARD, J. BRUINSMA, TH. SCHILLER, M. EßLER & T. KIRSCHEY: Makrophytenkartierung in ausgewählten Seen Nordostdeutschlands

OSTENDORP, W. & J. OSTENDORP: Hydromorphologische Erfassung und Klassifikation von Seen in Brandenburg

SEIBOLD, D., K. SCHMIEDER, A. KOHLER, E. FALUSI, K. PENKSZA, G. H. ZELTNER & U. VEIT: Langzeitmonitoring der submersen Makrophyten in den Fließgewässern der Friedberger Au (bei Augsburg) im Zeitraum 1972 - 2012

TÄUSCHER, L.: 120 Jahre Langzeit-Untersuchungen der Besiedlung mit Algen im Großen Müggelsee (Berlin)

Deutsche Gesellschaft für Limnologie (DGL) Erweiterte Zusammenfassungen der Jahrestagung 2013 (Potsdam-Berlin), Hardegsen 2014

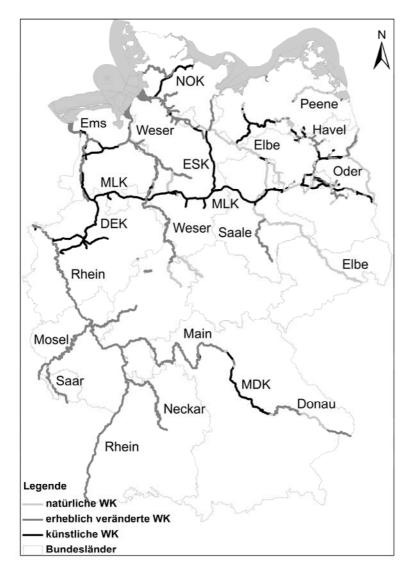
Bewertung und Prognose des ökologischen Potentials von Bundeswasserstraßen – Gewässerkategorien, Gewässertypen und Ausweisungsgründe nach Wasserrahmenrichtlinie

Nathalie Cron¹, Thomas Zumbroich² & Ina Quick¹

Keywords: Wasserrahmenrichtlinie, gutes ökologisches Potential, erheblich veränderte Wasserkörper, künstliche Wasserkörper, Bundeswasserstraßen

Einleitung

Im Jahre 2000 trat die europäische Richtlinie 2000/60/EG, die sog. Wasserrahmenrichtlinie in Kraft. Ihre Forderung ist es, den "guten ökologischen Zustand" (göZ) in natürlichen Wasserkörpern (NWB) und das "gute ökologische Potential" (göP) in als erheblich verändert (HMWB) und künstlich ausgewiesenen (AWB) Wasserkörpern spätestens 2027 nachweisen zu können. Um den ökologischen Zustand von Wasserkörpern beschreiben und bewerten zu können, wurden einheitliche Verfahren zur Gewässerbewertung entwickelt. Diese gelten jedoch bislang lediglich für NWB, die Betrachtung der HMWB und AWB wurde zunächst vernachlässigt. Derzeit wird im Auftrag der LAWA eine bundeseinheitliche Erfassung und Bewertung des göP erarbeitet (LAWA 2012 a, 2012 b) und die Anwendung im Rahmen eines Praxisprojektes überprüft. Eine tiefergehende Betrachtung von Bundeswasserstraßen steht dabei nicht im Vordergrund, diese sind jedoch zu > 70 % und damit überwiegend als HMWB und AWB ausgewiesen. Um den spezifischen Eigenschaften dieser Gewässer gerecht zu werden, wird ein Verfahren zur Bewertung der Wasserkörper speziell für Bundeswasserstraßen im Rahmen des hier dargestellten Dissertationsvorhabens entwickelt.


Ziele, konzeptionelles Vorgehen und Datengrundlagen

Ziel ist die Entwicklung eines Verfahrens zur Bewertung von HMWB und AWB zur Einschätzung und Beurteilung der Zielerreichung des göP von Bundeswasserstraßen.

In einem ersten Schritt werden dazu theoretische Maßnahmen identifiziert, die, unter Berücksichtigung vorhandener Nutzungen, zur Erreichung des göP aus hydromorphologischer Sicht beitragen sollen. Sind alle, anhand der theoretischen Maßnahmenidentifikation möglichen hydromorphologischen Maßnahmen bekannt, ist es möglich, die Veränderungen innerhalb des Gewässers und somit die Veränderung der vorhandenen Habitate zu benennen. Auf Grund bekannter Habitatpräferenzen der Fauna (Fokus: Makrozoobenthos und Fische) können auf dieser Basis exemplarische Taxalisten für das ökologische Potential generiert werden. Diese stellen die Ausgangsbasis für ein Bewer-

¹ Bundesanstalt für Gewässerkunde, Referat M3 Grundwasser, Geologie, Gewässermorphologie, Am Mainzer Tor 1, 56068 Koblenz, cron@bafg.de, quick@bafg.de, ² Rheinische Friedrich Wilhelms Universität Bonn, Mathematisch-Naturwissenschaftliche Fakultät – Geographisches Institut sowie Planungsbüro Zumbroich, Breite Str. 21, 53111 Bonn, tz@zumbroich.com

tungsverfahren dar. Dabei ist vor allem an Bundeswasserstraßen die Berücksichtigung von Neozoen von Relevanz. Weiterhin soll ein Prognosemodul zur Vorhersage der potentiellen Effektivität von Maßnahmen entwickelt werden. Dadurch ist bereits im Vorfeld eine Abbildung der möglichen Verbesserung des hydromorphologischen und biologischen Zustandes des Wasserkörpers im Hinblick auf die Zielsetzung der Wasserrahmenrichtlinie möglich. Das Prognosemodul kann somit zur Priorisierung von Maßnahmen beitragen und verschiedenartige Eingriffe und Maßnahmen bewerten.

Um sämtliche für das Vorhaben relevanten Informationen und Gewässer zu extrahieren wurden die Daten aus dem WasserBLIcK (Bund-Länder-Informations- und

Kommunikationsplattform; www.wasserblick.net) herangezogen und ausgewertet. Die Informationen aus dem WasserBLIcK basieren auf den Daten der Bestandsaufnahme aus dem Jahr 2004 und wurden für den ersten Bewirtschaftungsplan im Jahr 2009 verwendet.

Die für Bundeswasserstraßen relevante Gebietskulisse ist in Abb. 1 dargestellt. Sie zeigt das gesamte Bundeswasserstraßennetz mit allen Gewässerkategorien (Fluss, See, Übergangs- und Küstengewässer). Die als HMWB und AWB ausgewiesenen Bundeswasserstraßen entsprechen dem Untersuchungsgebiet des hier vorgestellten Vorhabens.

Abbildung 1: Bundeswasserstraßennetz mit Darstellung der Gewässerausweisungen von natürlichen, erheblich veränderten und künstlichen Wasserkörpern.

Prozentuale Verteilung der Ausweisung von Bundeswasserstraßen

Bei Betrachtung der Ausweisung von Bundeswasserstraßen ergibt sich für die Gewässerkategorie **Fluss**, dass 23% der Bundeswasserstraßen als NWB ausgewiesen wurden. Ebenfalls 23 % der Bundeswasserstraßen wurden als AWB ausgewiesen (Kanäle) und 54 % als HMWB. Somit ergibt sich ein Anteil von 77 % des Bundeswasserstraßennetzes, für welches das Ziel "gutes ökologisches Potential" nach Wasserrahmenrichtlinie gilt. Die Prozentangaben beziehen sich auf die Gewässerlänge in km.

Die Übergangsgewässer an Bundeswasserstraßen sind zu 100% als HMWB ausgewiesen. Sie enthalten die Nordsee-Ästuare Ems, Weser, Elbe und Eider. Hierbei bezieht sich die Prozentangabe auf die Fläche in ha.

An Bundeswasserstraßen sind insgesamt 5 **Seen** (Lehnitz-, Griebnitz-, Schlönitzsee, Edertal- und Diemeltalsperre) als HMWB ausgewiesen. Bezogen auf den Gesamtflächenanteil (in ha) aller Seen, die auch Bundeswasserstraße sind, handelt es sich dabei um 3% der Seen, die als HMWB ausgewiesen wurden. Dabei ist jedoch zu berücksichtigen, dass die Edertal- und Diemeltalsperre enthalten sind, die flächenmäßig den größten Anteil repräsentieren. Auf Grund der Tatsache, dass es sich bei diesen um ehemalige Flüsse handelt, die durch den Bau von Talsperren aufgestaut wurden, sind beide Gewässer auch im Datensatz der Flüsse enthalten. Werden die Talsperren in diesem Datensatz daher nicht mehr berücksichtigt, verbleibt ein Anteil von < 1% erheblich veränderter Seen an Bundeswasserstraßen. Da dieser Anteil sehr gering ist, wird diese Gewässerkategorie im weiteren Verlauf nicht weiter betrachtet.

Auch bei den **Küstengewässern** im Bereich der Bundeswasserstraßen wurden lediglich 5 Wasserkörper (untere Trave, Kieler Innenförde, Travemünde, Wismarbucht Südteil und Unterwarnow) als HMWB ausgewiesen, die flächenmäßig ebenfalls nur einen Anteil < 1% erreichen. Folglich wird auch diese Gewässerkategorie im weiteren Verlauf der Arbeiten nicht weiter untersucht.

In Relation zu der relevanten Betrachtungskulisse für Bundeswasserstraßen (vgl. Abb. 1) besitzen Seen und Küstengewässer daher im Gegensatz zu den Gewässerkategorien Fluss und Übergangsgewässer anteilig keine große Bedeutung für die Entwicklung eines Verfahrens zur Bewertung von HMWB und AWB.

Einteilung von HMWB-Gruppen an Bundeswasserstraßen, Beispiel Gewässerkategorie Fluss

Um erfolgversprechende Maßnahmenoptionen zur Erreichung des göPs aus hydromorphologischer Sicht (s. o.) abzuleiten, ist es erforderlich gewässertypspezifische Charakteristika mit zu beachten. Auch die vorhandenen Nutzungen (WRRL Art. 4 Abs. 3) im und am Gewässer sind hierfür relevant, damit mögliche Restriktionen durch die Nutzungen bezogen auf die Maßnahmenumsetzung berücksichtigt werden können. Aus der Kombination von Gewässertypen mit den an den Bundeswasserstraßen vorherrschenden Nutzungen (WRRL Art. 4 Abs. 3) werden Gruppen erheblich veränderter Wasserkörper ermittelt (HMWB-Gruppen). Für Kanäle und Übergangsgewässer erfolgt eine eigenständige Einteilung von AWB/HMWB-Gruppen. Hier wird exemplarisch die Einteilung von HMWB-Gruppen an Flüssen dargestellt. Um eine Einteilung vorzunehmen, wurde zunächst die prozentuale Verteilung der Gewässertypen an als erheblich verändert ausgewiesenen Bundeswasserstraßen betrachtet (s. Tab. 1).

Verteilung der Gewässertypen an als erheblich verändert ausgewiesenen Bundeswasserstraßen

Zur Eingrenzung der HMWB-Gruppen wurde auf Gewässertypen mit einem Anteil > 10 % fokussiert. Diese beinhalten die größten Bundeswasserstraßen und decken auch regional ein breites Spektrum ab. Der häufigste Gewässertyp an HMWB ist Typ 10 mit 43,2 %. Neben dem Gewässertyp 10 sind auch die Gewässertypen 9.2 (12,9 %), 20 (11,5 %) und 15 (11,1 %) enthalten. Insgesamt repräsentieren diese Gewässertypen 78,7 % der vorhandenen Gewässertypen an als erheblich verändert ausgewiesenen Bundeswasserstraßen.

Tabelle 1: Prozentuale Verteilung der Gewässertypen an als erheblich verändert ausgewiesenen Bundeswasserstraßen im Binnenbereich, sowie Auflistung der Gewässer für die Gewässertypen mit einem prozentualen Längenanteil (km) > 10%

Gewäs	ssertyp	Prozentualer Anteil	Gewässer
10	Kiesgeprägte Ströme	43,2	Donau, Main Neckar, Rhein, Weser
9.2	Große Flüsse des Mittelgebirges	12,9	Fulda, Lahn, Main-Donau-Kanal, Mosel, Neckar, Ruhr, Saale, Saar
20	Sandgeprägte Ströme	11,5	Elbe, Rhein, Weser
15	Sand- und lehmgeprägte Tieflandflüsse	11,1	Aller, Alte Oder, Dortmund-Ems-Kanal, Elde, Ems, Este, Goldfischdever, Hase, Havel, Ilmenau, Jeetzel, Müritz- Havel-Wasserstraße, Nottekanal, Oder-Spree-Kanal, Spree, Spree-Oder-Wasserstraße, Stör
22.2	Flüsse der Marschen	7,5	
17	Kiesgeprägte Tieflandflüsse	3,2	
22.1	Gewässer der Marschen	2,5	
15_G	Große sand- und lehmgeprägte Tieflandflüsse	2,1	
21	Seeausflussgeprägte Fließgewässer	1,3	
12	Organisch geprägte Flüsse	0,3	
22.3	Ströme der Marschen	0,7	
23	Rückstau- bzw. brackwasser- beeinflusste Ostseezuflüsse	0,4	
	betrachtet (< 1% bzw. keine weisung)	3,3	

Ermittlung der Ausweisungsgründe der an erheblich verändert ausgewiesenen Bundeswasserstraßen am häufigsten vorkommenden Gewässertypen

Für die vier Gewässertypen wurde anschließend die prozentuale Verteilung der Ausweisungsgründe ausgewertet. Dabei ergibt sich folgendes Bild (s. Tab. 2):

Vor allem bei den Gewässertypen des Mittelgebirges (10, 9.2) zeigt sich ein hoher Anteil von Wasserkörpern, bei denen kein Ausweisungsgrund angegeben wurde (25 % der Wasserkörper ohne Ausweisungsgrund bei Gewässertyp 9.2 und 22% der Wasserkörper ohne Ausweisungsgrund bei Gewässertyp 10). Der häufigste Ausweisungsgrund im Gewässertyp 9.2 mit 62 % sind e2 und e5 (s. Tab. 2). Auch im Gewässertyp 10 sind diese Ausweisungsgründe gemeinsam mit e9 am häufigsten vertreten (33%). Weiterhin tritt im Gewässertyp 10 der Ausweisungsgrund e2 mit einer Häufigkeit von 22 % auf.

Bei den Gewässertypen des Tieflandes (20, 15) zeigt sich, dass der Anteil mit mehreren Ausweisungsgründen sehr hoch ist. Im Gewässertyp 20 ist der häufigste Ausweisungsgrund e2 mit e9 bei einem prozentualen Anteil von 46 %. Im Gewässertyp 15 ist der häufigste Ausweisungsgrund mit 36 % e2.

Unter Berücksichtigung der Gewässertypen mit einem Anteil > 10% und der Ausweisungsgründe innerhalb dieser Gewässertypen, ergeben sich folglich vorerst 23 (s. Tab. 2) zu betrachtende HMWB-Gruppen, die es im weiteren Verlauf der Untersuchungen zu betrachten gilt.

Tabelle 2: Prozentuale Verteilung der Ausweisungsgründe zu den Gewässertypen > 10% und die sich daraus ergebenden HMWB-Gruppen (links); Erläuterung der Ausweisungsgründe (rechts)

HMWB-	Gewässer-	Ausweisungsgrund	Prozentualer
Gruppe	typ		Anteil
1	9.2	e2, e5	63
		keiner	25
2		e10	6
3		e13, e2, e5	3
4		e2	3
5		e13	1
6	10	e2, e5, e9	34
7		e2	22
		keiner	22
8		e2, e3, e8 ,e9, e13	9
9		e2, e3, e9, e10, e12	5
10		e2, e9	5
11		e2, e5, e9, e12	4
12	20	e2, e9	46
13		e2, e3, e5, e8, e9, e13	34
14		e2, e3	12
15		e2, e3, e9, e10, e12, e13, e16	6
16		e2, e3, e9, e12, e13, e16	2
17	15	e2	37
18		e2, e8, e9, e10, e12, e13	23
19		e2, e3, e9, e12, e13	17
20		e2, e3, e5, e8, e9, e10, e12, e13	16
21		e2, e10	5
22		e2, e10, e4	3
23		e5, e10, e12, e13	1

Ausv	veisungsgrund
e2	Schifffahrt, inkl. Häfen
e3	Freizeitnutzung
e4	Wasserspeicherung zur
	Trinkwassergewinnung
e5	Wasserspeicherung zur
	Stromerzeugung
e8	Wasserregulierung
e9	Hochwasserschutz
e10	Landentwässerung
e12	nachhaltige Entwick-
	lungstätigkeiten: Land-
	wirtschaft
e13	nachhaltige Entwick-
	lungstätigkeiten: urbane
	Nutzung und Infrastruk-
	tur
e16	sonstige nachhaltige
	Entwicklungstätigkeiten

Zusammenfassung

Im Rahmen des Dissertationsvorhabens wird ein Verfahren zur gewässerökologischen Bewertung von als erheblich verändert (HMWB) und künstlich (AWB) ausgewiesenen Wasserkörpern für Bundeswasserstraßen entwickelt. Vorgesehen ist dabei anhand von potentiell identifizierten Verbesserungsmaßnahmen unter Berücksichtigung der vorhandenen Nutzungen (WRRL Art. 4 Abs. 3), mögliche Habitatbedingungen im Gewässer abzuleiten. Daraus sollen exemplarische Taxalisten von Fischen und Makrozoobenthos generiert werden, um eine wasserrahmenrichtlinienkonforme Bewertung zu ermöglichen. Abschließend soll ein Prognosemodul entwickelt werden, mit dessen Hilfe verschiedene Maßnahmen, aber auch Eingriffe identifiziert und bewertet werden können.

Im Rahmen erster, spezifisch für Bundeswasserstraßen erfolgter Datenauswertungen des Wasser-BLIcK ergab sich, dass Seen und Küstengewässer auf Grund des geringen Anteils von HMWB an Bundeswasserstraßen nicht weiter betrachtet werden.

Zur Ableitung möglicher Verbesserungsmaßnahmen erfolgte die Bildung von HMWB-Gruppen (s. o.), anhand der Kopplung von Gewässertypen und vorhandener Nutzungen (Ausweisungsgründe). Vorerst werden lediglich die Gewässertypen betrachtet, die einen prozentualen Längenanteil > 10 % am gesamten Bundeswasserstraßennetz erreichen. Aus der Kopplung zwischen den Gewässertypen und den Ausweisungsgründen ergeben sich insgesamt 23 im Weiteren zu betrachtende HMWB-Gruppen. Für diese Gruppen werden zukünftig mögliche Maßnahmen zur Erreichung des göP abgeleitet, um anschließend auf die daraus resultierenden Habitatbedingungen schließen zu können.

Literatur

- EG-WRRL (2000) / Europäische Wasserrahmenrichtlinie: Richtlinie 2000/60/EG des Europäischen Parlaments und des Rates: Schaffung eines Ordnungsrahmens für Maßnahmen der Gemeinschaft im Bereich der Wasserpolitik. Amtsblatt der Europäischen Gemeinschaften vom 23. Oktober 2000. L 327. Luxemburg.
- LAWA (2012 a): Handbuch zur Bewertung und planerischen Bearbeitung von erheblich veränderten Gewässern (HMWB) und künstlichen Gewässern (AWB) Version 1.0. Erstellt im Rahmen des Projektes: "Bewertung von HMWB / AWB Fließgewässern und Ableitung des HÖP / GÖP (LFP 3.10)". Stand: April 2012. Bund/Länder-Arbeitsgemeinschaft Wasser.
- LAWA (2012 b): Endbericht Bewertung von HMWB / AWB Fließgewässern und Ableitung des HÖP / GÖP (LFP 3.10). Stand: April 2012. Bund/Länder-Arbeitsgemeinschaft Wasser.
- WasserBLIcK-Daten aus WasserBLIcK. Bund-Länder-Informations- und Kommunikationsplattform. Online im Internet: URL: http://www.wasserblick.net/servlet/is/1/. Abrufdatum: 13.06.2013

Deutsche Gesellschaft für Limnologie (DGL) Erweiterte Zusammenfassungen der Jahrestagung 2013 (Potsdam-Berlin), Hardegsen 2014

Where the wild things are – Konzept zur Ermittlung von Wiederbesiedlungsquellen im Einzugsgebiet

Dahm, Veronica & Hering, Daniel

Universität Duisburg-Essen, Fakultät für Biologie, Abteilung Aquatische Ökologie, Universitätsstr. 5, 45141 Essen, Tel.: (+49)-201-1834724, veronica.dahm@uni-due.de

Einleitung

Seit dem Inkrafttreten der EG Wasserrahmenrichtlinie wurden in Deutschland eine Vielzahl an Renaturierungsmaßnahmen umgesetzt um den "guten ökologischen Zustand" bzw. das "gute ökologische Potenzial" von Fließgewässern zu erreichen. Die Maßnahmen zur Renaturierung reichen von passiven Maßnahmen (z. B. durch die Extensivierung der Aue) an meist relativ kurzen Abschnitten bis hin zu umfangreichen aktiven Maßnahmen (z. B. die Wiederverzweigung des Gewässerlaufs). Unabhängig von der Art der Maßnahme reagieren die Biologischen Qualitätskomponenten (Fische, Makrozoobenthos, Makrophyten) jedoch häufig – wenn überhaupt –zeitverzögert auf die Schaffung der neuen Habitate.

Im Rahmen des vom Umweltbundesamt geförderten Projekts "Entwicklung neuer Strategien zur Optimierung von Fließgewässer-Revitalisierungsmaßnahmen und ihrer Erfolgskontrolle" ((FKZ 3710 24 207, Laufzeit 2010 – 2013) wurden Einflussfaktoren untersucht, die die postiven Effekte von Renaturierungsmaßnahmen überlagern können. Das Wiederbesiedlungspotenzial spielt hier eine wichtige Rolle. Eine zeitnahe Verbesserung des ökologischen Zustands ist nur zu erwarten, wenn sich Besiedlungsquellen typspezifischer, senstiver Arten im Umfeld befinden und keine Wanderhindernisse der Ausbreitung im Wege stehen (Stoll et al. 2013, Sundermann et al. 2011). Vor der Umsetzung einer Maßnahme ist es daher empfehlenswert, das entsprechende Einzugsgebiet einer Analyse auf mögliche Besiedlungsquellen zu unterziehen. Die Berücksichtigung des Wiederbesiedlungspotenzials hat folgende Vorteile:

- Positive Effekte treten bei hohem Wiederbesiedlungspotenzial relativ schnell ein, was vor dem Hintergrund des engen Zeitplans der Umsetzung der Wasserrahmenrichtlinie von großer Bedeutung ist.
- Die eher langfristigen Effekte von Renaturierungsmaßnahmen in degradierten Einzugsgebieten können durch das niedrige Wiederbesiedlungspotenzial erklärt werden.
- Die Renaturierung im Umfeld von Besiedlungsquellen unterstützt Konzepte zur Schaffung von Biotopverbünden.

Es wurde ein Konzept zur Ermittlung von Besiedlungsquellen der Fische, der Makrophyten und des Makrozoobenthos auf Grundlage von Beprobungsdaten entwickelt, sowie eine Methodik zur Prognose von Besiedlungsquellen in Abhängigkeit von Umweltfaktoren. Die Ergebnisse werden im

Detail Anfang 2014 veröffentlicht. Hier werden die Ergebnisse beispielhaft am Makrozoobenthos im Bundesland Nordrhein-Westfalen vorgestellt.

Datengrundlage

Dem Projekt standen umfangreiche Daten aus dem operativen Monitoring zur Verfügung, mehrheitlich aus den Jahren 2008-2010 (Abbildung 1). Sie umfassen Taxalisten des Makrozoobenthos (ca. 6.000 Messstellen in 14 Bundesländern), der Fische (ca. 2.700 Messstellen in 6 Bundesländern) und der Makrophyten (ca. 2.800 Messstellen in 10 Bundesländern). Für die Auswertung wurde nur eine Probenahme je Messstelle verwendet, die im jeweiligen für das Monitoring empfohlenen Beprobungszeitraum stattfand. Informationen zu Umweltvariablen (Landnutzung, Gewässerstruktur, Höhe, Quellentfernung) wurden für alle Messstellen ermittelt.

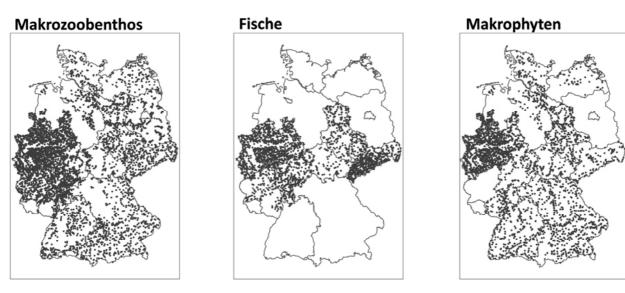


Abb. 1: Für die Auswertung verwendete Messstellen des operativen Monitorings.

Methoden

Zur Ermittung der Besiedlungsquellen wurden für das Makrozoobenthos und die Fische die Messstellen identifiziert, die eine hohe Anzahl sensitiver Arten aufweisen. Als sensitive Arten wurden für das Makrozoobenthos die Gütezeiger des Fauna Index (Bewertung +1 und +2, http://www.fliessgewaesserbewertung.de/kurzdarstellungen/core-metrics/fauna-index/ [19.01.2014]) herangezogen, für die Fische die referenzspezifischen Leitarten und für die Makrophyten die Gütezeiger nach Phylib (A-Bewertung, Schaumburg et al. 2012).

Die Anzahl der Gütezeiger des Makrozoobenthos an den Messstellen wurde für jeden Gewässertyp gegen die ökologische Zustansklasse aufgetragen. Messstellen, die eine Anzahl von Gütezeigern über dem 25 % Perzentil des Boxplots des guten ökologischen Zustands aufweisen, wurden als Besiedlungsquellen definiert. Da die Ableitung der Fischreferenzen zwischen den Bundesländern variiert, wurden die Referenzen nach der maximalen Anzahl der Leitarten in der Referenz zusammengefasst. Der in das Fisch-basierte Bewertungssystem fiBS integrierte Leitartenindex (LAI) (Dußling 2008a) wurde für alle Messstellen berechnet und alle Messstellen mit LAI ≥ 0.7 als Besiedlungsquelle eingestuft. Das Bewertungssystem Phylib, Modul Makrophyten, berücksichtigt nur die submersen Makrophytentaxa. Die Gütezeiger traten an den Messstellen der berücksichtigten Makrophyten-Gewässertypen (MP, MRS, MRK, TNk, TNm, TRk und TRm) mit einer Häufigkeit

zwischen 1 und 7 auf. An vielen Messstellen wurden keine Gütezeiger gefunden. Somit wurden alle Messstellen mit mindestens einem Gütezeiger als potenzielle Besiedlungsquellen eingestuft. Die Ergebnisse wurden für alle Organismengruppen mit ArcGIS (ESRI) visualisiert.

Abbildung 2 zeigt das Vorgehen zur Prognose möglicher Besiedlungsquellen anhand von Umweltfaktoren. Die Messstellen wurden in die Gruppen "Besiedlungsquellen" und "Nicht-Besiedlungsquellen" aufgeteilt. Die statistische Methode "Boosted Regression Trees" wurde angewandt (Programm R, R Development Core Team, 2011) um die Umweltvariablen (Variablen der Landnutzung, Gewässerstruktur, Höhe über N.N., Quellentfernung) zu identifizieren, die am besten zwischen den beiden Gruppen differenzieren. Des Weiteren wurden Grenzwerte abgeleitet. Somit konnten gewässertypspezifisch die Kombinationen von Umweltvariablen ermittelt werden, die das Vorkommen von Besiedlungsquellen wahrscheinlich machen.

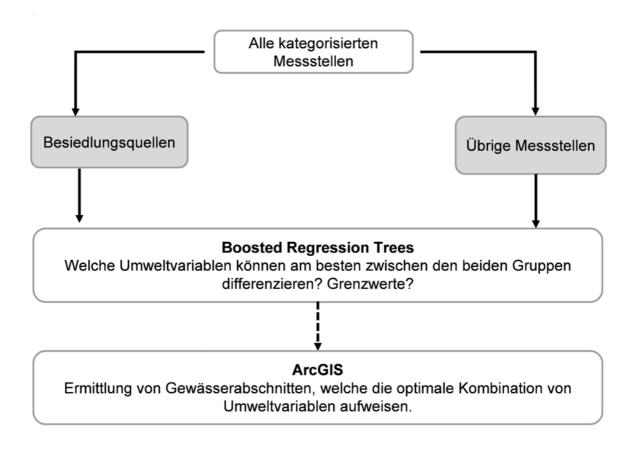


Abb. 2: Konzept zur Prognose von Besiedlungsquellen unter Verwendung der statistischen Methode Boosted Regression Trees und des Programms ArcGIS.

Ergebnisse & Diskussion

Abbildung 3 zeigt die Ergebnisse für das Makrozoobenthos in Nordrhein-Westfalen. Rein visuell können Regionen identifiziert werden, die mit hoher Wahrscheinlichkeit ein hohes (geschlossene Kreise) bzw. ein mäßiges bis niedriges (gestrichelter Kreis) Wiederbesiedlungspotenzial aufweisen. Die Ergebnisse beruhen auf der Ermittlung von Besiedlungsquellen auf Grundlage von Bepro-

bungsdaten (dreieckige Symbole) und auf der Prognose von Besiedlungsquellen in Abhängigkeit von Umweltvariablen (grün markierte Gewässerabschnitte).

Es wurden für alle Bundesländer Karten erstellt, die dem Projekt Daten zur Verfügung stellten. Sie können als Planungshilfe bei der Priorisierung von Maßnahmen dienen. Zu berücksichtigen ist, dass bei der Prognose der Besiedlungsquellen weitere wichtige Umweltfaktoren, wie die Gewässerqualität, nicht berücksichtigt wurden, da diese Information nicht flächendeckend verfügbar ist. Der Anteil intensiver Landnutzung deckt die Gewässerbelastung zu einem gewissen Grad ab, trotzdem sind die identifizierten Gewässerabschnitte als erster Hinweis auf das Vorhandensein von Besiedlungsquellen zu verstehen. Diese sollten im entsprechenden Einzugsgebiet noch auf weitere Belastungen geprüft werden.

Die Karten zum Wiederbesiedlungspotenzial und das methodische Vorgehen werden Anfang 2014 im Rahmen des Endbericht des Projekts "Entwicklung neuer Strategien zur Optimierung von Fließgewässer-Revitalisierungsmaßnahmen und ihrer Erfolgskontrolle" veröffentlicht.

Wiederbesiedlungspotenzial Nordrhein-Westfalen - Makrozoobenthos

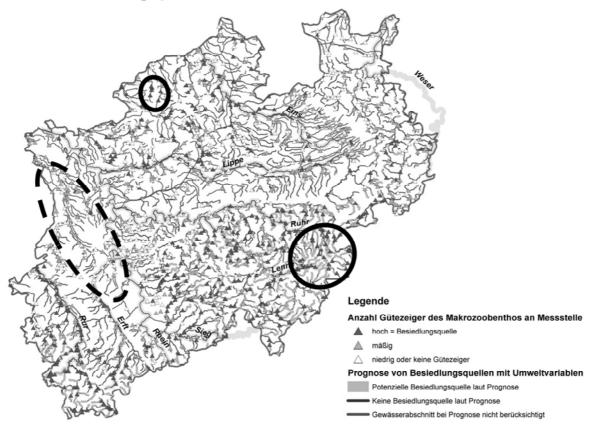


Abb. 3: Besiedlungsquellen des Makrozoobenthos in Nordrhein-Westfalen ermittelt aus Daten des operativen Monitorings und der Modellierung mit Boosted Regression Trees.

Literatur

Dußling, U. (2008a): fiBS 8.0 - Softwareanwendung, Version 8.0.6 zum Bewertungsverfahren ausdem Verbundprojekt: Erforderliche Probenahmen und Entwicklung eines Bewertungsschemas zur fischbasierten Klassifizierung von Fließgewässern gemäß EG-WRRL. Webseite der

- Fischereiforschungsstelle Baden-Württemberg: http://www.landwirtschaft-bw.info/servlet/PB/menu/1116288 11/index1215610192432.html [19.01.2014]
- R Development Core Team (2011): R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria: http://www.R-project.org [19.01.2014]
- Schaumburg, J., Schranz, C., Stelzer, D., Vogel, A., Gutowski, A. (2012): Weiterentwicklung biologischer Untersuchungsverfahren zur kohärenten Umsetzung der EG –Wasserrahmenrichtlinie Teilvorhaben Makrophyten & Phytobenthos. Bayerisches Landesamt für Umwelt, Endbericht im Auftrag des Umweltbundesamts (FKZ 3707 28 201), 550 S., Augsburg/Wielenbach
- Stoll, S., Sundermann, A., Lorenz, A.W., Kail, J. and Haase, P. (2013): Small and impoverished regional species pools constrain colonisation of restored river reaches by fishes. Freshwater Biology, 58: 664–674
- Sundermann, A., Stoll, S., Haase, P. (2011): River restoration success depends on the species pool of the immediate surroundings. Journal of Applied Ecology 21: 1962-71

Deutsche Gesellschaft für Limnologie (DGL) Erweiterte Zusammenfassungen der Jahrestagung 2013 (Potsdam-Berlin), Hardegsen 2014

Twenty years of rehabilitation and management of a gravel pit lake in the vicinity of Ingolstadt, South Germany

Frank, C., Mühlberger, R., Arauner, U., & Frank, H.

1 Laboratory of applied biology and ecology, Ulm, Germany, bernd.biber@gmx.de, 2 Amt für Stadtentwässerung, Ingolstadt, Germany, Rainer.Muehlberger@ingolstadt.de

Keywords: Reoligotrophication, aeration, macrophytes, functional management

Abstract

Gravel pit lakes in the surrounding of Ingolstadt at the Danube River are important features for nature conservation and as recreation sites for the urban population. The "Dreigroschensee" (50 ha, 3,5 m mean depth, 9,5 m max. depth) became an important recreation site after the end of the excavation (1972), on holidays up to 20.000 visitors/day. Massive blooms of toxic cyanobacteria and faecal bacteria stopped recreational use at the end of 1980's. Eutrophication was managed by artificial aeration and mass control of planctivourus fish. The decline in nutrient input and wetland buffer zones resulted in an increase in secchi depth from 0.9 to 6.5 m, decrease in algal productivity and a switch to a macrophyte dominated lake. In the view of the European water directive the lake represents a reference to former existing lakes within one of the largest floodplains along the Danube in Germany. Water quality, phases of rehabilitation and macrophyte problems are discussed. As gravel pit lakes occur along the Danube floodplain in the neighbouring countries, this lake could be a model for management and rehabilitation in these countries.

Einleitung

Nach Beendigung des Kiesabbaus wurde 1972 der Baggersee Ingolstadt zum Naherholungsgebiet umgestaltet (Dingethal et al. 1981). Durch einen ca. 4 km langen Entwässerungsgraben der Donau wurden in den Baggersee jährlich zwischen 1,5 - 3,1 t Phosphor eingetragen (Arauner et al. 1995). Ein Drittel verblieb mit dem sedimentierenden Plankton und Ausfällungen im Sediment (200- 800 mg P/kg TG). Während der sommerlichen Stagnationsphase erfolgte eine zusätzliche Phosphorfreisetzung aus dem Sediment, die die Eutrophierungsprozesse beschleunigte.

Die zunehmenden Beeinträchtigungen der Wasserqualität des Baggersees in chemischer, bakteriologischer und biologischer Hinsicht sowie Sichttiefen um 0,7- 1,2 m erforderten Maßnahmen zur Wiederherstellung einer guten Wasserqualität und ein Management zur langfristigen Sicherung der guten Wasserqualität.

Daten zum Baggersee Ingolstadt

Fläche insgesamt ca. 50 ha	Mittlere Tiefe					
Westteil 19,8 ha	Westteil 3,4 m					
Ostteil 29,4 ha	Ostteil 3,1 m					
Volumen ca. $1.6 \times 10^6 \mathrm{m}^3$						
mittlerer Zufluss 0, 78 m ³ /s	Grundwasser ca. 0,2 m ³ /s					
Maximale Wassertiefe 8,5 m bei Mittelwasser						
Wassererneuerungszeit (theor.) 24 Tage						
P-Eintrag über die Luft 2,5 – 38 kg /See						
• Rücklösung aus dem Sediment unterhalb 4m ca. 5 kg/ Jahr						

Tabelle 1: Kenndaten zum Baggersee Ingolstadt

Untersuchungen zur Herkunft der Nährstoffe und anderer Einflussgrößen

Ab 1990 wurden der Entwässerungsgraben, Grundwasserpegel, das Sediment und verschiedene Seeteile auf Nährstoffe (Stickstoff (N) und Phosphor(P) sowie Temperatur, Sichttiefe , Leitfähigkeit, pH-Wert und Sauerstoffgehalt untersucht.

Mittels Isotopen-Untersuchung wurde der Anteil der Donau am Nährstoffeintrag bestimmt (75 %).

Die Untersuchung bakteriologischer Parameter wurde und wird vom Gesundheitsamt Ingolstadt durchgeführt.

Der Fischbestand wurde bestimmt, um Maßnahmen zur sogenannten Biomanipulation zu planen. Mit ca. 350 kg/ha Fischbiomasse und dominanten planktivoren Fischen waren Hegebefischungen in den Folgejahren wichtig für die Veränderung des Fischbestandes zu Gunsten der Raubfische und damit Förderung der Filtrierer.

Die Untersuchung bakteriologischer Parameter wurde und wird vom Gesundheitsamt Ingolstadt durchgeführt.

Die Erfassung des Istzustandes und weitere Verlaufskontrolle der Sanierungsmaßnahmen wurden durch Untersuchungen des Phyto- und Zooplanktons sowie der Makrophythen ergänzt.

Maßnahmen

Mitte September 1990 wurde im thermisch und chemisch geschichteten westlichen Seeteil an drei Stellen Belüftungsanlagen zum Sauerstoffeintrag ins das Tiefenwasser (Hypolimnion) installiert.

Der Fischereiverein Ingolstadt führte in den Folgejahren mehrere Befischungsaktionen zur Reduzierung der planktonfressenden Weißfische durch. Starke Frequentierung durch Kormorane in der zweiten Hälfte der 90 er Jahre trugen zu einer weiteren Reduzierung des Fischbestandes bei.

Durch Maßnahmen im Einzugsgebiet der Donau reduzierte sich die Phosphatfracht der Donau, was aber nur geringen Einfluss auf die Konzentrationen im Entwässerungsgraben hatte. Zur Verbesse-

rung der bakteriologischen Situation wurde die Entwicklung einer schützenden Ufervegetation gefördert und gepflegt (u.a. Fischereiverein Ingolstadt) sowie die Auswirkungen des Fütterns von Wasservögeln auf Schautafeln dargestellt und Futterstellen aufgelöst.

Ergebnisse

Jahr	Zulauffrachten kg/a	Ablauffrachten kg/a	Verbleib im See kg/a
1985	2233,7	1985,5	248,2
1990	3040,3	2159,2	881,1
1995	1737,3	1054,8	682,5
2000	1737,3	1402,2	335,1
2005	1377,4	1513,9	-136,5
2010	1507,7	961,7	546
2012	1240	682,5	557,5

Tabelle 2: Zu- und Ablauffrachten Baggersee Ingolstadt

Phosphor

Als Ergebnis der durchgeführten Maßnahmen am See und der Wirkung der Phosphatmengen-Verordnung von 1985 reduzierte sich die P-Belastung in der Donau und damit im See mit einer Verzögerung von ca. 10 Jahren. Eine Verbesserung der Sichttiefen, insbesondere des Klarwasserstadiums im Frühjahr, trat erst nach etwa 3 Jahren ein. Es deckt sich mit dem Erreichen der niedrigen P-Frachten aus der Donau.

Nitrat-Stickstoff

Nitrat wird ebenso wie Ammonium als Stickstoffquelle von den Algen zum Wachstum benötigt. Im Sommer wurden daher die geringsten Gehalte in den oberen Wasserschichten gemessen. In der Tiefe kam es durch zufließendes Grundwasser zu einem Anstieg des Nitratgehalts. Der hohe Nitratgehalt ist ursächlich durch die landwirtschaftliche Praxis (Düngung) und Auswaschung ins Grundwasser bedingt. Höhe des Eintrags sind von der Art der jeweiligen Nutzung im Einzugsgebiet und der Höhe des Grundwasserspiegels abhängig. Dies wird besonders im Vergleich der Jahre 1997/98 deutlich (Anlage Nitrat-Verlauf seit 1987, Sonnentage und Niederschlag). Die Nitratgehalte sind in der Vegetationsperiode deutlich höher. Der hohe Stickstoffgehalt und damit ein günstiges Verhältnis von N zu P haben in den Jahren nach Installation der Belüftung verhindert, dass sich im See giftige Cyanobakterienblüten ausgebildet haben, wie es zum Teil davor der Fall war.

In den tiefen Wasserschichten und über Grund steht der im Nitrat chemisch gebundene Sauerstoff zudem als weitere Sauerstoffquelle zum Abbau der organischen Substanz zur Verfügung, so dass dadurch zusätzlich die Bildung von giftigem Schwefelwasserstoff und die Rücklösung von Nährstoffen vermieden wird.

In den Folgejahren nahmen die Sichttiefen während des Klarwasserstadiums weiter zu und liegen z.Z. zwischen 5.5 - 6.5 m.

Makrophyten

Seit Ende der 90 er Jahre konnten vereinzelt Makrophyten im Uferbereich festgestellt werden. Im Bereich des Bootsanlegers waren dies Ceratophyllum, Potamogeton perfoliatus, P. pectinatus und Najas marina.

Begünstigt durch die Zunahme der Sichttiefe erfolgte 2003 eine Massenentwicklung im gesamten Baggersee. Der See wurde von einem Plankton dominierten See zu einem Makrophyten dominierten See. Das zum Teil massenhaft auftretende Nixenkraut (Najas marina) ist in Bayern stark gefährdet (Rote Liste Bayern).

2004 ist die Makrophytenentwicklung wieder zusammengebrochen und es dominierte das Phytoplankton. Aufgrund der augenblicklichen Nährstoffsituation sind nach Scheffer (1993) zwei Gleichgewichtszustände möglich: Algendominanz oder Makrophytendominanz. Der Wechsel kann durch verschiedene u.a. witterungsbedingte Einflüsse wie Hochwässer, Kälte- und Wärmeperioden, Beeinflussung des Nährstoffhaushalts und der Zirkulation veranlasst werden.

Folgende Arten wurden im See festgestellt:

Ceratophyllum demersum	Rauhes Hornblatt	dominant			
Myriophyllum spicatum	ähriges Tausendblatt	häufig			
Potamogeton natans	schwimmendes Laichkraut	am Ufer			
Potamogeton crispus	Krauses Laichkraut	massenhaft			
Potamogeton perfoliatus	durchwachsenes Laichkraut	am Ufer			
Potamogeton pectinatus	Kamm Laichkraut	dominant			
Najas marina	Großes Nixenkraut	massenhaft			
Elodea canadensis/nutallii	Wasserpest	häufig			
Characeen der Gattungen Tolypella, Nitellopsis, Chara hä					

Diese Arten spiegeln gut die mesothrophe Nährstoffsituation im See wieder.

Zusammenfassung/Schlussfolgerungen

Die Vorgänge im Baggersee können in mehrere Abschnitte eingeteilt werden. 1. Vor Betrieb der Belüftung

- 2. Nach Einbau der Belüftung bis Ende 1992. In dieser Zeit war bei Phyto- und Zooplankton und der Sichttiefe noch keine deutliche Veränderung trotz einer Reduzierung der Nährstoffbelastung feststellbar, Trägheit des Systems.
- 3. 1993 1997, Zeitraum in dem die Reduzierung der Nährstoffe wirksam wurde, Anstieg der Sichttiefen, Umstrukturierung der Planktonbiozönosen.
- 4. 1998 bis heute, Zeitraum in dem der Baggersee zwischen zwei Gleichgewichtszuständen pendeln kann und die Auswirkungen der Nährstoffreduktion stärker durch Einzelereignisse bestimmt werden.

Bei den gegebenen Bedingungen im Baggersee hinsichtlich der Sichtiefe und Nährstoffe befinden wir uns in einem zweigipfligen Gleichgewichtszustand, der leicht durch relativ kleine Änderungen in den jeweils gegenteiligen Zustand wechseln kann.

Durch die Erhöhung der Nährstoffe, zum Teil durch Freisetzung in den Makrophytenbeständen und erhöhten Phosphor-Eintrag in 2003 gab es 2004 wieder eine stärkere Dominanz der Algen (Modell von Scheffer et al. 1993).

Es ist daher weiterhin wichtig, für die Erhaltung eines optimalen ökologischen und erholungswirksamen Zustandes des Baggersees, alle Maßnahmen weiterhin zu verfolgen, die diesem Ziel dienen. Da der Entwässerungsgraben nicht vom Baggersee abgekoppelt werden kann (Kosten), sollten folgende Maßnahmen weiter durchgeführt werden.

- 1. Belüftung zu Zeiten der Schichtung im See (Vegetationsperiode).
- 2. Pflege der schützenden Ufersäume
- 3. Kontrolle des Fischbestandes. Wieviel und was wird besetzt?
- 4. Bei Makrophytenentwicklung: Schneiden einer Schneise für die bessere und schnellere Durchleitung der Wassers des Entwässerungsgrabens durch den See. Begrenzte Freihaltung der Badebereiche.
- 5. Beibehaltung des Fütterungsverbots für Wasservögel.
- 6. Umweltverträgliche Naherholung, Naturerlebnis vor Partyaktivitäten.

Um langfristig Veränderungen erkennen zu können, sollte die Messung der Sichttiefen weitergeführt sowie wenigstens Untersuchungen zur Zirkulationsphase (Frühjahr oder Herbst) und Stagnationsphase im Sommer durchgeführt werden. Zu diesen Zeitpunkten sollte eine halbquanitative Untersuchung der Wasserproben auf Algenarten, Zooplankton und Makrophyten erfolgen, wie es bereits in der Vergangenheit durchgeführt wurde.

Danksagung

Mitarbeitern der Stadtentwässerung der Stadt Ingolstadt, des Wasserwirtschaftsamt Ingolstadt, des Fischereivereins Ingolstadt, Wasserwacht Ingolstadt, Mitarbeitern des Labors für angewandte Biologie und Ökologie Ulm

Literatur

Arauner U; Frank C; Frank H 1995: Veränderungen im Nährstoffhaushalt eines Baggersees nach Einrichtung einer Zwangszirkulation. DGL-Tagung in Berlin, Erweiterte Zusammenfassung der Jahrestagung, 173-176

Dingethal FJ, Jürging P, Weinzierl W 1981: Kiesgrube und Landschaft. Handbuch über den Abbau von Sand und Kies, Paul Parey Verlag.

Morscheich, Mattukat, Kucklenz 2004: Biomanipulation in Bayerischen Flachseen. Vorstellen des Forhabens zum Praxistest an 5 ausgewählten Gewässern. DGL Tagung 2004.

Scheffer M, Hosper SH, Meijer ML, Moss B, Jeppesen E 1993: Alternative Equilibria in shallow lakes. Trends in ecology and evolution vol.8, 275-279

Schönfelder 1987: Rote Liste Bayern.

Deutsche Gesellschaft für Limnologie (DGL) Erweiterte Zusammenfassungen der Jahrestagung 2013 (Potsdam-Berlin), Hardegsen 2014

Auswirkungen künstlicher und natürlicher Nährstoff- und Kalzitfällungen auf die Sedimentbeschaffenheit

Thomas Gonsiorczyk, Peter Casper & Peter Kasprzak

Leibniz-Institut für Gewässerökologie und Binnenfischerei, Abteilung Experimentelle Limnologie, Alte Fischerhütte 2, 16775 Stechlin, togo@igb-berlin.de

Keywords: Sedimente, Kalzitfällung, Phosphor, Aluminium, Vivianit

Einleitung

Bei Seenrestaurierungen werden häufig Ca²⁺-, Al³⁺- oder Fe^{2+/3+}-Verbindungen eingesetzt, um Phosphor dauerhaft im Sediment festzulegen. Auch unter natürlichen Bedingungen wird ein Teil des Phosphors in den Sedimenten an diese Verbindungen gebunden. So gelten z.B. in den Hartwasserseen der norddeutschen Tiefebene auftretende Kalzitfällungen als natürlicher Selbstreinigungsmechanismus (Dittrich et al. 2011). Auch der an Metalloxide (Al³⁺, Fe^{2+/3+}) gebundene P kann in den Sedimenten stabil festgelegt werden. Am Beispiel der Feldberger Seen (Feldberger Haussee, Schmaler und Breiter Luzin), des Tiefwarensees und des polymiktischen Melzer Sees sollen die Auswirkungen künstlich induzierter und natürlicher P-Einlagerungsprozesse in den Sedimenten dargestellt werden.

Im Schmalen Luzin wurden von 1996-2000 Maßnahmen zur Intensivierung der Kalzitfällung durchgeführt (Zugabe von Ca(OH)₂ in das Tiefenwasser) (Dittrich et al. 2011), im Tiefwarensee wurde von 2001-2005 eine kombinierte Zugabe von Kalziumhydroxid und Natriumaluminat in das Tiefenwasser durchgeführt (Koschel et al. 2006, Wauer et al. 2009) und im Feldberger Haussee wurde im Frühjahr 2011 eine P-Fällung mit Polyaluminiumchlorid durchgeführt (Kasprzak et al. 2013). Im polymiktischen Melzer See wurden im Herbst 2011 und Frühjahr 2012 ebenfalls zwei P-Fällungen mit Polyaluminiumchlorid durchgeführt (Tab. 1).

Anhand von Sedimentuntersuchungen wurden die Auswirkungen dieser Maßnahmen auf die P-Bindungskapazität der Sedimente untersucht und mit den natürlichen P-Einlagerungsmechanismen, die nicht durch die Fällmittelzugabe beeinflusst wurden, verglichen. Der Breite Luzin, in dem keine Restaurierungsmaßnahmen durchgeführt wurden, wurde als unbehandeltes Referenzgewässer in die Untersuchungen mit einbezogen.

Material und Methoden

Untersuchungsgebiet

Die untersuchten Seen liegen im Großraum der Mecklenburger Seenplatte und sind glazialen Ursprungs. In allen untersuchten Seen finden intensive Kalzitausfällungen statt und der Kalzitumkarbonatgehalt der Sedimente (0-10 cm) beträgt 30-65 % des Trockengewichtes.

Alle untersuchten Seen, mit Ausnahme des polymiktischen Melzer Sees, sind dimiktisch. Die Mittelwerte der epilimnischen Ges.-P-Konzentrationen lagen im Sommer 2012 zwischen $12-27~\mu g/l$ (Tab. 1).

Tab. 1: Morphometrische und trophische Kriterien der untersuchten Seen (HS = Feldberger Haussee, SL-MB = Schmaler Luzin (Mittelbecken), BL = Breiter Luzin, TWS = Tiefwarensee, MZ = Melzer See)

	HS	SL-MB	BL	TWS	MZ
Seefläche [km²]	1,36	0,42	2,68	1,41	0,13
mittlere Wassertiefe [m]	6,0	16,3	25,2	9,6	2,7
Maximale Wassertiefe [m]	12,0	34,0	58,5	23,0	3,9
Gesamt-P [µg/l] 1)	15 ± 5	12 ± 2	13 ± 5	24 ± 9	27 ± 11
Chl a [µg/l] 1)	$5,9 \pm 3,8$	$1,2 \pm 0,5$	$2,6 \pm 1,5$	8 ± 10	27 ± 16
Sichttiefe [m] 1)	$1,7 \pm 0,5$	$6,6 \pm 1,8$	$2,9 \pm 0,7$	$4,1 \pm 1,5$	$1,0 \pm 0,4$
Restaurierungsmaßnahme	2011	1996-2000	-	2001-2005	2011/2012
Elementzugabe pro m ⁻² Sedimentoberfläche ²⁾	(27 g Al ³⁺)	(476 g Ca^{2+})		(137 g Al ³⁺ , 154 g Ca ²⁺)	$(2 \times 14 \text{ g} \text{Al}^{3+})$

Sommermittel 2012 (Epilimnion, Mai - September)

Ergebnisse und Diskussion

In allen Seen, bei denen eine Al-Zugabe erfolgte (HS, TWS, MZ) kam es innerhalb kurzer Zeit zu einer drastischen Abnahme der Konzentrationen an gelöstem, reaktivem P (SRP) an der Sediment-Wasser-Kontaktzone (Abb. 1) und damit auch zu einer Abnahme der SRP-Rücklösungsraten aus den Sedimenten.

Im Tiefwarensee haben sich seit der Restaurierungsmaßname (2001-2005) etwa 6 cm Sedimentneuauflage gebildet. In dieser Sedimentneuauflage wurde 2013 eine starke Zunahme der SRP-Gradienten an der Sediment-Wasser-Kontaktzone ermittelt und die P-Rücklösungsraten aus dem Sediment stiegen an. Im Feldberger Haussee und im polymiktischen Melzer See, bei denen die Al-Fällung noch nicht so lange zurück liegt, sind die Auswirkungen der Al-Fällungen auf die SRP-Konzentrationen im Porenwasser noch direkt an der Sedimentoberfläche nachweisbar. Im Sediment des Schmalen Luzins konnte nach der Ca(OH)₂-Zugabe nur eine sehr geringfügige Auswirkung auf die SRP-Konzentrationen im Porenwasser festgestellt werden.

Die Konzentrationen gelöster Substanzen im Porenwasser können sich in Abhängigkeit von den Umweltbedingungen und aktuellen Sedimentationsereignissen schnell verändern. Der Effekt von Restaurierungsmaßnahmen auf den P-Haushalt eines Gewässers kann durch die Untersuchung der P-Bindungsformen in den Sedimenten sehr gut ergänzt und quantifiziert werden.

Im Tiefwarensee und Feldberger Haussee spiegelt sich die Auswirkung der Al-Fällung in einer Zunahme der an Metalloxiden gebunden P-Formen wider (Abb. 2). Im Feldberger Haussee, wo sich die mit Al³⁺ angereicherte Sedimentschicht noch relativ nah an der Sedimentoberfläche befindet, kann in den nächsten Jahren eine weitere Zunahme des an Al³⁺ gebunden P erwartet werden, da der P, der in tieferen Sedimentschichten mobilisiert wird, wahrscheinlich weiterhin an Al³⁺ gebunden werden kann. Dieser Prozess der P-Bindung an die mit Al³⁺ angereicherte "Sperrschicht" führte im Tiefwarensee zu sehr hohen Anteilen des an Al³⁺ gebunden P. Im Melzer See, in dem auch eine Al-

TWS: Sedimentfläche unterhalb von 10 m Wassertiefe (0,61 km²), Wauer et al., 2009; SL-MB: Sedimentfläche unterhalb von 12 m Wassertiefe (0,28 km²)

Fällung durchgeführt wurde, konnte bisher keine Zunahme des an Al-gebunden P festgestellt werden. Jedoch belegen hier die geringen SRP-Konzentrationen an der Sedimentoberfläche den Erfolg der Fällungsmaßnahme.

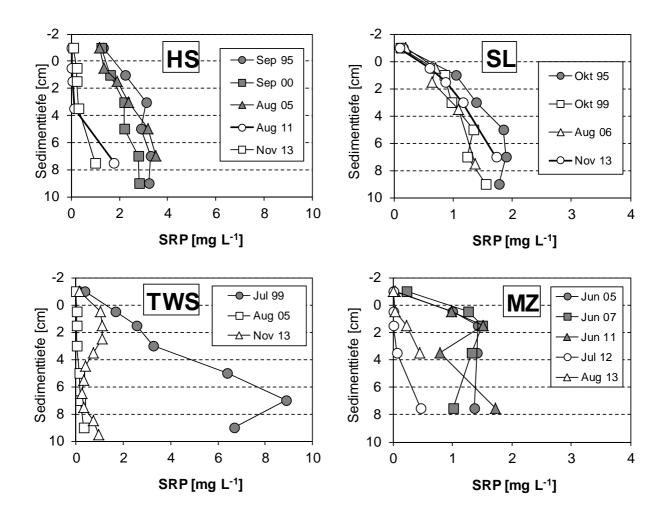


Abb. 1: Konzentrationen von gelöstem, reaktivem Phosphor (SRP) im Porenwasser der Sedimente an der tiefsten Stelle der untersuchten Seen (HS = Feldberger Haussee, SL = Schmaler Luzin, TWS = Tiefwarensee, MZ = Melzer See; bitte unterschiedliche Skalierung der x-Achse beachten)

Die Maßnahmen zur induzierten, hypolimnischen Kalzitfällung sind im Sediment des Schmalen Luzins in einer deutlich sichtbaren, weißen Schicht mit einem markanten Maximum der CaCO₃-Anteile zu erkennen. In dieser Schicht, die sich 2013 in einer Sedimenttiefe von etwa 5 cm befand (2006 bei 3-4 cm), kommt es auch zu einer deutlichen Zunahme des an CaCO₃ gebunden P (Abb. 2). Auch wenn sich die künstlich induzierte Kalzitfällung kaum auf die SRP-Gradienten an der Sediment-Wasser-Kontaktzone ausgewirkt hat, hatte die über den Zeitraum der Restaurierungsmaßnahme an CaCO₃ mitgefällte P-Menge (insgesamt 686 kg P) einen großen Einfluss auf den P-Haushalt im Schmalen Luzin, dessen P-Inhalt vor der Maßnahme ca. 800 kg betrug. Im Tiefwarensee lag die P-Mitfällung durch CaCO₃ bereits vor der Restaurierungsmaßnahme auf einem sehr hohen Niveau und konnte durch die Ca(OH)₂-Zugabe noch weiter intensiviert werden.

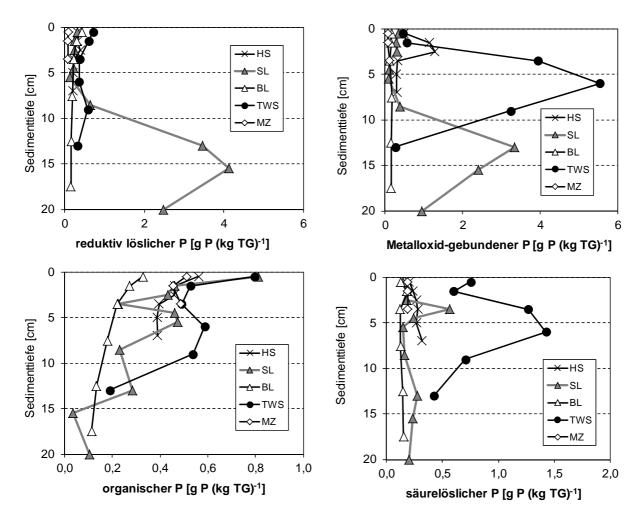


Abb. 2: Anteile des reduktiv-löslichen P (Fe- und Mn-P), des an Metalloxiden gebunden P (Fe- und Al-P), des organisch gebundenen P und des an CaCO3 gebundenem P (säurelöslicher P) in den untersuchten Seen (Sedimentkernentnahme im BL und SL-MB im Jahr 2006, alle anderen: 2013)

Im Schmalen Luzin kommt es in tieferen Sedimentschichten zu einer Zunahme der reduktiv löslichen und an Metalloxide gebundenen P-Formen (Abb. 2). Rasterelektronische und röntgendiffraktometrische Untersuchungen ergaben, dass ein Großteil dieser Zunahme höchstwahrscheinlich auf die Bildung von Vivianit - $Fe_3^{2+}(PO_4)_2 \times 8H_2O$, - zurückzuführen ist (Abb. 3). Diese Fe-P-Verbindung ist auch im anoxischen Milieu der Sedimente stabil. Die genauen Umstände, wie es zur Bildung von Vivianit im Sediment kommt, sind Gegenstand aktueller Untersuchungen (Rothe et al. 2013).

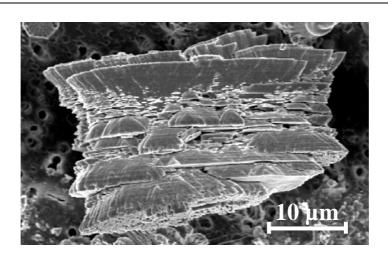


Abb. 3: Vivianit-Kristall im Sediment des Schmalen Luzin (Sedimenttiefe: 17-23 cm)

Schlussfolgerungen

Die Ausbringung von Al- und Ca-Verbindungen in Seen ist eine effektive Maßnahme, um in den P-Haushalt eines Gewässers einzugreifen. Insbesondere die Al-Zugabe kann die P-Rücklösung aus den Sedimenten langfristig reduzieren. Durch die hypolimnische Ca(OH)₂-Zugabe kann die in den Hartwasserseen der norddeutschen Tiefebene natürlich auftretende Kalzitfällung als natürlicher Selbstreinigungsmechanismus gefördert werden. Auch Fe-Verbindungen können stabile Bindungen mit Phosphor in anoxischen Sedimenten bilden. Interessant für zukünftige Restaurierungsmaßnahmen wäre es herauszufinden, inwieweit die Vivianitbildung in den Sedimenten gefördert werden kann.

Danksagung

Die Untersuchungen wurden vom Umweltministerium Mecklenburg-Vorpommern finanziert. Für die Unterstützung bei der Probenahme und den Analysen bedanken wir uns bei Ute Beyer, Carola Kasprzak und Reingard Rossberg (Rasterelektronenmikroskop).

Literatur

- Dittrich, M., Gabriel, O., Rutzen, C. & Koschel, R. (2011): Lake restoration by hypolimnetic Ca(OH)₂ treatment: Impact on phosphorus sedimentation and release from sediment. Sci Total Environ. 409: 1504–1515.
- Kasprzak, P., Wauer, G., Gonsiorczyk, T. & Hupfer, M. (2013): Restaurierung des dimiktischen, eutrophen Feldberger Haussees (Mecklenburg-Vorpommern) mit einer relative niedrigen Dosis von Polyaluminiumchlorid Gründe, Ergebnisse, Probleme. Deutsche Gesellschaft für Limnologie, Jahrestagung 2012, Berlin/Potsdam, Erweiterte Zusammenfassungen.
- Koschel, R., Casper, P., Gonsiorczyk, T., Roßberg, R., Wauer, G. (2006): Hypolimnetic Al and CaCO₃ treatments and aeration of a stratified eutrophic hardwater lake in Germany. Verh. Internat. Verein. Limnol. 29: 2165-2171.
- Rothe, M., Kleeberg, A. & Hupfer, M., (2013): Authigene Vivianitbildung als Folge einer Fällung mit Eisen. Deutsche Gesellschaft für Limnologie, Jahrestagung 2012, Berlin/Potsdam, Erweiterte Zusammenfassungen.
- Wauer, G., Gonsiorczyk, T., Hupfer, M. & Koschel, R. (2009): Phosphorus balance of Lake Tiefwarensee during and after restoration by hypolimnetic treatment with aluminium and calcium salts. Lakes Reserv.: Res. Manage. 6: 289-295.

Deutsche Gesellschaft für Limnologie (DGL) Erweiterte Zusammenfassungen der Jahrestagung 2013 (Potsdam-Berlin), Hardegsen 2014

Makrophytenkartierung in ausgewählten Seen Nordostdeutschlands

Silke Oldorff1, Ellen Kiel2, Volker Krautkrämer³, Klaus van de Weyer³, Jens Mählmann4, Ralf Köhler1, Jan Köhler5, Sebastian Bernhard6, John Bruinsma7, Thomas Schiller8, Markus Eßler9 & Tom Kirschey10,

¹Landesamt für Umwelt, Gesundheit und Verbraucherschutz (LUGV), Seeburger Chaussee 2, 14467 Potsdam OT Groß Glienicke, Silke.Oldorff@LUGV.Brandenburg.de, Ralf.koehler@LUGV.Brandenburg.de, ²Carl von Ossietzky Universität 26111 Oldenburg, ellen.kiel@uni-oldenburg.de, ³Lanaplan, Lobbericher Straße 5, 41334 Nettetal, klaus.vdweyer@lanaplan.de, ⁴Sächsisches Textilforschungsinstitut e.V., Annaberger Str. 240, 09125 Chemnitz, jens.maehlmann@stfi.de, ⁵Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB) im Forschungsverbund Berlin e.V., koehler@igb-berlin.de, ⁶Staatliche Betriebsgesellschaft für Umwelt und Landwirtschaft, 01097 Dresden, Sebastian.Bernhard@smul.sachsen.de, ⁷Thorbeckelaan 24, 5694 CR Breugel, Die Niederlande, bruinsma@dse.nl, ⁸Technische Universität, 04849 Bad Düben, thomas.schiller@tu-dresden.de, ⁹forsteri@t-online.de, ¹⁰NABU-Naturschutzstiftung International, Tom.Kirschey@NABU.de,

Keywords: submerse Makrophyten, FFH-Erhaltungszustand, Brandenburg, Naturkundliches Tauchen

Einleitung

Im Anschluss an die Jahrestagung der DGL fand vom 10. bis 15. September 2013 eine Tauchexkursion des DGL-AK Tauchen in ausgewählten Seen in Nord-Brandenburg statt. Insgesamt nahmen daran 13 Personen teil und absolvierten 25 Tauchgänge in 13 Seen. Sie erfassten die submersen Makrophyten nach der Methode des "naturkundlichen Tauchens" (Arendt et al. 2011) und dokumentierten die Kartierungsergebnisse anhand von Aufnahme- und Bewertungsbögen. Die Gewässer und die Ergebnisse ihrer Momentaufnahme werden nachfolgend dargestellt.

Untersuchungsgebiet

Die Exkursion des DGL-Arbeitskreises "Tauchen in der Limnologie" führte an elf natürliche Seen, einen Tonstich und ein Auskiesungsgewässer im Norden des Landes Brandenburg (Tab. 1). Neun der 13 Seen befinden sich im Naturpark Stechlin-Ruppiner Land, im Südteil der Mecklenburgischen Seenplatte gelegen. Das Gebiet entstand durch die Frankfurter Staffel der Weichselvereisung, in der sich die Hälfte der Wasserfläche aller natürlichen Klarwasserseen Brandenburgs befindet. Der Naturpark beherbergt 180 Seen unterschiedlicher Trophie mit einer Größe von > 1 ha. Die Seen befinden sich im Norden der Landkreise Ostprignitz-Ruppin und Oberhavel und grenzen z.T. an das Land Mecklenburg-Vorpommern. Alle untersuchten Seen des Naturparks liegen in FFH-Gebieten und sind dem FFH-Lebensraumtyp 3140 "Oligo- bis mesotrophe kalkhaltige Gewässer mit benthischer Vegetation aus Armleuchteralgen" zuzuordnen. Ein Teil von ihnen ist zudem Referenzgewässer nach der Wasserrahmenrichtlinie (WRRL). Die Seen im Naturpark sind Bestandteil eines seit 2008 durchgeführten Monitorings zur Erfassung des FFH-Erhaltungszustandes, das im Rahmen des Projektes "Naturkundliches Tauchen" erfolgt. Die Ergebnisse der DGL-Tauchgänge fließen in dieses Programm ein und ermöglichen einen Vergleich mit den Ergebnissen der Vorjahre. Die Tauchgänge in den außerhalb des Naturparks gelegenen Seen – Döbertstich bei Zehdenick (Ton-

stich), Liebnitzsee bei Wandlitz, Parsteiner See bei Brodowin, Ruhlesee bei Ruhlsdorf (Auskiesungsgewässer) (Tab. 1) – lieferten ergänzende hydrobotanische Basisdaten.

Material und Methoden

Erfassung

Nach der Methode des "naturkundlichen Tauchens" (vgl. Arendt et al. 2011) ergibt sich für jede Größe und Beckengestalt eine unterschiedlich große Anzahl zu betauchender Gewässerabschnitte, um eine Einschätzung des Erhaltungszustandes des jeweiligen Sees vornehmen zu können. Wird diese Mindestanzahl nicht erreicht, können die Ergebnisse aber zumindest Hinweise liefern.

Bewertung

Folgende, während der Tauchgänge erhobene Parameter gehen in die Bewertung ein:

- Vorhandensein und Vollständigkeit lebensraumtypischer Habitatstrukturen
- Untere Makrophytengrenze (UMG) (DIN EN 15460 2007)
- Arteninventar gesamt (Artenzahl)
- Deckungsgrade je Art/Taxon und Tiefenverbreitung der Arten/Taxa
- erkennbare Beeinträchtigungen

Für jeden betauchten Gewässerbereich erfolgt die Erfassung und Bewertung dieser Kriterien nach dem offiziellen Bewertungsschema für den FFH-Lebensraumtyp 3140 (nach Bund-Länder-AK Monitoring, Stand Oktober 2009 [1]);

Ergebnisse und Diskussion

Naturkundliches Tauchen

Von 13 untersuchten Gewässern konnte für den Wummsee und den Parsteiner See die Bewertung "hervorragend" (A) ausgesprochen werden. Für sieben Gewässer, d.h. der Mittlere - und Untere Giesenschlag, Nehmitzsee (Nordbecken), Großer Stechlinsee, Pätschsee, Liebnitzsee und Ruhler See, wurde ein "guter Erhaltungszustand" (B) festgestellt. Die meisten, der mit "B" bewerteten Gewässer, wiesen zahlreiche Beeinträchtigungen auf und wichen deutlich vom Referenzwert ab. Im Fall des Stechlinsees wurde ein Transekt als "im Erhaltungszustand C befindlich" eingeschätzt. Die Seen Döbertstich, Oberer Giesenschlag, Twernsee und Peetschsee bei Steinförde wurden auf Basis dieser Kartierkriterien ebenfalls mit dem "Erhaltungszustand "C" eingestuft. Von den 13 untersuchten Seen lag die UMG zum Zeitpunkt der Untersuchungen nur im Stechlinsee und im Twernsee in jeweils einem Transekt tiefer als acht Meter.

Botanische Beobachtungen

Die seltenen Armleuchteralgen *Chara aspera, Ch. rudis, Ch. filiformis* und *Ch. tomentosa* werden als lebensraumtypische Arten für oligo- bis mesotrophe kalkreiche Klarwasserseen gewertet. Sie haben heute ihren Verbreitungsschwerpunkt in der Mecklenburgischen Seenplatte, wo dieser Seetyp noch am häufigsten erhalten ist (Korsch et al. 2008). *Chara rudis* und *Chara filiformis* besitzen eine starke Bindung an nährstoffarme Gewässer. *Chara tomentosa* ist etwas toleranter und vermag auch noch schwach eutrophe Seen zu besiedeln. *Chara rudis* und *Chara tomentosa* können in den mittleren Wassertiefen zwischen einem und vier Meter große Reinbestände ausbilden. Jedoch wurden sie

in mehr als 50% der untersuchten Seen nicht gefunden. Wegen der Häufigkeit auf den ersten Blick erkennbare *Chara filiformis*-Vorkommen besitzen mittlerweile einen hohen Seltenheitswert und konnten nur noch im Parsteiner See und im Wummsee beobachtet werden. Bestände von *Chara rudis* wurden ebenfalls nur im Parsteiner See, Wummsee und im Unteren Giesenschlag kartiert. *Chara aspera* trat mit einzelnen Pflanzen im Wummsee auf. Alle vier Arten sind im Bestand stark rückläufig und vom Aussterben bedroht bzw. stark gefährdet.

Im Nehmitz- und im Twernsee wurde neben *Potamogeton lucens* auch *Potamogeton praelongus* gefunden. In der "Roten Liste" wird diese Art für Deutschland und Zentraleuropa als "stark gefährdet" geführt. Die zunehmende Eutrophierung von Gewässern wird als eine der Hauptursachen des Bestandsrückgangs dieser Art betrachtet.

Tauchuntersuchungen bieten gegenüber der bisher verbreiteten Kartierung submerser Makrophyten mit Krautanker bzw. -haken viele Vorteile. So kann der Deckungsgrad der Bestände einzelner Arten mittels Tauchmethode weitaus exakter bestimmt werden. Auch die Untere Makrophytengrenze wird deutlicher erfasst und bei der Tauchkartierung werden Beeinträchtigungen (z.B. Wühlspuren benthivorer Fischarten) augenfällig, die bei anderen genannten Methoden unentdeckt blieben. Bei flächenhafter Tauchkartierung kann zudem der durch Makrophyten besiedelbare Gewässergrund auch flächenscharf erfasst werden (van de Weyer 2007).

Da für den Parsteiner See, Ruhler See, Döbertstich und Liebnitzsee keine Vergleichsdaten vorliegen, können deren Ergebnisse nicht vergleichend diskutiert werden. Eine kleinflächige gerade mosaikartig wechselnde Makrophytenbesiedlung zeigte der Nehmitzsee. Einerseits unterschieden sich die einzelnen Seebecken hydrologisch sehr stark, andererseits wurde innerhalb eines Tauchabschnitts ein breites Spektrum von Zustandscharakteristika angetroffen. Die aktuellen vorhandenen Daten liefern dafür keine Erklärung. Für eine Interpretation dieser Ergebnisse bedarf es im Nehmitzsee einer flächendeckenden Tauchkartierung.

Giesenschlag-Seen:

Insbesondere im Mittleren und Unteren Giesenschlag ist die UMG im Vergleich zu den Vorjahren von 6 auf 5 Meter eindeutig verringert und der Anteil von Störanzeigern, nicht lebensraumtypischen Arten hat zugenommen (Tauchclub Nehmitzsee 2012). Die Giesenschlagrinne erhält oberirdisch Zufluss aus dem Twernsee und dem Rochowsee. Die Trophie im Twernsee (van de Weyer et al. 2008) und im Rochowsee (Kabus 2011) hat sich in den vergangenen Jahren erheblich verschlechtert. Ursache hierfür dürfte die Absenkung des Wasserstandes beider Seen um im Mittel 20 Zentimeter (Losiak, mündliche Mitteilung) sein. Diese Wasserstandsabsenkung resultiert aus der Aufgabe der Rhinspeichervorhaltung, in deren Folge Verlandungsmoore im Einzugsgebiet und periphere Bruchwälder stärker entwässert wurden. In wieweit die davon ausgehende Mobilisierung von Nährstoffen oder/und die Aktivität benthivorer Fischarten (sowohl *Abramis brama und Cyprinus carpio*) als wesentliche Eutrophierungsfaktoren wirken, kann derzeit nicht beurteilt werden.

Pätschsee bei Rheinsberg:

Der Pätschsee ist über den Zustrom aus dem Bereich der Möckernteiche und des Kleinen Pätschsees sowie der vorgelagerten tiefgründig entwässerten Moorflächen in der Gemarkung Linowsee erheblichen Nährstofffrachten ausgesetzt. Im Bereich des Zulaufs ist dieses Gewässer frei von Makrophyten und bis zur Seemitte von Störanzeigern geprägt. Nicht vom Zustrom betroffene Teile des Sees ("Berg") weisen noch intakte Characeengrundrasen auf. Für die Verbesserung dieser Situation wäre eine Reduzierung der Stoffeinträge notwendig.

Tab. 1: Im Rahmen der DGL-Tauchkartierung untersuchte Gewässerabschnitte (Transekte). AU=abgeschlossene Untersuchungen vor Tauchgang mit gleicher Methodik, UF= Untersuchungsflächen, UMG=Untere Makrophytengrenze, Habitatstruktur mit Deckungsgrad Grundrasen, Arteninventar - Anzahl lebensraumtypischer Pflanzen (Gesamtartenzahl), Angaben zum Erhaltungszustand: A (weiß)= hervorragend, B (hellgrau) = gut), C (dunkelgrau): mittel bis schlecht.

Gewässer	AU	UF	Datum	UMG	Habitatstruktur	Arteninventar	Beeinträchtigungen
Döbertstich	0	1	10.09.2013	5	< 10 %	0 (11)	hoher Anteil Störanzeiger
Liebnitzsee	0	1	11.09.2013	6	> 10 %	3 (11)	hoher Anteil Störanzeiger
Parsteiner See	0	1	12.09.2013	5,1	> 50 %	6 (11)	UMG bei 5,1 m
Ruhler See	0	1	12.09.2013	6,6	< 10 %	4 (12)	kein Chara-Grundrasen
Stechlin- Ostbucht T3	24	1	13.09.2013	5,2	> 10 %	2 (12)	UMG bei 5,2 m
Stechlin - Nordbucht T6	25	1	13.09.2013	4,5	> 10 %	3 (6)	UMG bei 4,5 m
Stechlin - Bootssteg T11	26	1	13.09.2013	11	< 10 %	4 (11)	fast keine Makrophyten
Stechlin Leddernbrück T20	27	1	13.09.2013	6,5	> 50 %	2 (5)	UMG bei 6,5 m
Nehnmitz 1166 A	27	1	13.09.2013	4,8	> 50 %	4 (12)	UMG bei 4,8 m
Nehmitz 1163 A	28	1	13.09.2013	5,2	> 10 %	4 (16)	hoher Anteil Störanzeiger
Nehmitz 1163 B	29	1	13.09.2013	5,6	> 50 %	2 (14)	UMG bei 5,6 m
Giesenschlag Oberer	6	1	13.09.2013	k.A	< 10 %	0 (4)	fast keine Makrophyten
Wummsee 979	16	1	14.09.2013	k.A	> 10 %	5 (13)	Störanzeiger > 10 %
Wummsee 970 A	17	1	14.09.2013	6	> 50 %	5 (10)	UMG bei 6 m
Wummsee 979 A	18	1	14.09.2013	7	> 50 %	5 (11)	UMG bei 7 m
Wummsee 970 B	19	1	14.09.2013	6	> 50 %	3 (7)	UMG bei 6 m
Wummsee 970 B	20	1	14.09.2013	6	> 50 %	3 (7)	nur 3 LRT-Arten
Wummsee 972 A	21	1	14.09.2013	6,2	> 50 %	6 (11)	Wühlschäde, Algenmatten
Giesenschlag Mittlerer	7	1	14.09.2013	5,2	> 10 %	3 (13)	Störanzeiger > 10 %
Giesenschlag Unterer	7	1	14.09.2013	5,2	> 50 %	3 (7)	UMG bei 5,2 m
Giesenschlag Unterer	8	1	14.09.2013	5	> 50 %	3 (7)	UMG bei 5,1 m
Twernsee 322	2	1	14.09.2013	8	< 10 %	3 (12)	hoher Anteil Störanzeiger
Pätschsee bei Rheinsberg	3	3	15.09.2013	5,4	> 10 %	3 (12)	hoher Anteil Störanzeiger
Peetschsee bei Steinförde 1016	7	1	15.09.2013	7,4	< 10 %	1 (4)	fast keine Makrophyten

Großer Stechlinsee:

Als Lebensraumtyp 3140 stellt der Große Stechlinsee eine Mischkategorie zwischen oligo- und mesotrophen Gewässern dar. Die angewandte Methodik lässt insbesondere im oberen Qualitätsbereich dieses Typs keine exakte Differenzierung zu. Ein Vergleich mit historischen Referenzangaben (Krausch 1964, Spieß 2004, van de Weyer et al. 2009) zeigt jedoch einen Trend zu einer erheblichen Zustandsverschlechterung. Im Vergleich zum Vorjahr (Tauchclub Nehmitzsee 2012) hat sich die UMG im Großen Stechlinsee im Durchschnitt um 2 Meter verringert. Da auch der Stechlinsee mehrere Buchten mit z.T. sehr heterogenem hydrologischem Verhalten besitzt, soll exemplarisch die Entwicklung der UMG im Bereich des Transekts T6 (Nordbucht) dargestellt werden (Abb. 2). Die Nordbucht wird weder von der Kühlwasserzirkulation noch von der Ortslage von Neuglobsow oder dem Zustrom nährstoffreichen Wassers aus dem Dagowsee direkt betroffen (Oldorff & Päzolt 2010, Kaiser et al. 2012). Diese Arbeiten berücksichtigen sowohl die Untersuchungen von Arendt et al. 2011 als auch von van de Weyer et al. 2009. Bisherige Betrachtungen hoben vor allem den Verlust der Tiefen- und der Flachwassergesellschaften hervor (van de Weyer et al. 2009, Oldorff & Päzolt 2010). Bei Erreichen der 4-m-Grenze trifft dies auch für die hauptbestandsbildende Art zu: im Stechlinsees ist dies Nitellopsis obtusa. Hoesch & Buhle 1996 ordnen Nitellopsis obtusa abhängig von der UMG unterschiedlichen Trophieindices zu (über 4 m: 2,5, unter 4 m: 1,4). Besonders problematisch ist im Stechlinsee der starke Rückgang bzw. das Verschwinden der Bestände von Chara aspera, Ch. contraria, Ch. filiformis, Ch. rudis und Ch. tomentosa sowie der Tiefengesellschaften, die auch auf den in dieser Exkursion betauchten Abschnitten fehlten. Sie zählen zu den lebensraumtypischen Arten und waren in früherer Zeit im Stechlinsee immer in großer Häufigkeit vertreten (Krausch 1964, Spieß 2004).

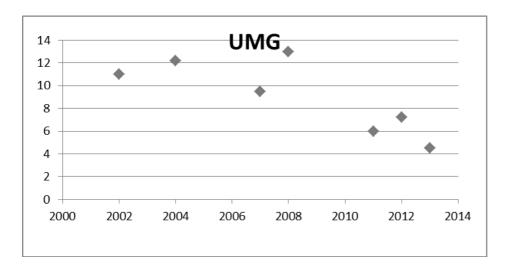


Abb. 2: Entwicklung der Unteren Makrophytengrenze (UMG) in der Nordbucht des Stechlinsees in Transekt/Tauchabschnitt T6 im Zeitraum 2002-2013 in Meter

Großer Wummsee:

Im Wummsee wurden fünf Tauchgänge durchgeführt. Auch hier wurde beobachtet, dass die UMG deutlich geringer war als 1996. Damals wurde sie in 23 Transekten im Durchschnitt bei 9,8 Meter, 2009-2012 bei 13 Transekten bei 7,5 Meter und 2013 bei 5 Transekten bei 6,8 Meter ermittelt.

Peetschsee bei Steinförde und Twernsee:

Beide Seen werden laut WRRL als mesotroph 1 mit einem LAWA Trophie-Index von 1,83 eingestuft. Am Tage der Betauchung waren in beiden Seen die Sichtweiten stark eingeschränkt. Der Peetschsee hatte fast keine Makrophyten und der Twernsee, wies nur Störanzeiger und in ganz geringen Beständen *Potamogeton praelongus* und *Vaucheria spec*. auf. In beiden Seen wurden starke Wühlspuren benthivorer Fischarten und starke Sedimentauflagen auf den Makrophyten festgestellt.

Döbertstich:

Im Döbertstich wurden Anhaltspunkte für ein aktuelles Massensterben von Großmuscheln -gefunden. Insgesamt wurden hunderte toter Exemplare verschiedener Alters- und Größenklassen von folgenden Arten festgestellt: *Anodonta cygnea, A. anatina, Unio tumidus* und *U. pictorum*.

Zusammenfassung/Schlussfolgerungen

Im Rahmen der DGL-Tagung fand im Norden Brandenburgs eine Tauchkartierung mit 25 Tauchgängen in 13 ausgewählten Gewässern statt, die nach der Methode des "Naturkundlichen Tauchens" durchgeführt wurde. Die Kartierungsergebnisse führten zu einer Reihe neuer Informationen über diese Seen und lieferten an vielen Standorten Hinweise auf den Rückgang lebensraumtypischer Makrophyten sowie weiterer Beeinflussungen. Benthivore Fischarten haben einen wesentlichen Anteil an dieser Entwicklung (vgl. Korsch et. al. 2013). Von den 13 untersuchten Gewässern konnte nur bei den Transekten von zwei Gewässern ein "hervorragender" (A), bei sieben ein "guter" (B) und bei fünf ein "mittlerer bis schlechter" (C) Erhaltungszustand festgestellt werden.

Danksagung

Für die Seen in den Naturschutzgebieten Wumm- und Twernsee sowie Stechlin im Naturpark Stechlin-Ruppiner Land wurde uns die Möglichkeit eingeräumt, die Tauchgänge im Rahmen von Befreiungen von den Verboten der Schutzgebietsverordnungen der unteren Naturschutzbehörden Ostprignitz-Ruppin und Oberhavel für das Projekt "Naturkundliches Tauchen" durchzuführen. Dafür möchten wir Frau Seegers (Landkreis Oberhavel) und Frau Schönemann (Landkreis Ostprignitz-Ruppin) danken.

Literatur

- Arendt, K., Oldorff, S., Kabus, T., Kirschey, T. (2011): Methodik und erste Ergebnisse des "naturkundlichen Tauchens" in Seen des Naturparks Stechlin-Ruppiner Land. Naturschutz und Landschaftspflege in Brandenburg 20 (4): 122-135.
- DIN EN 15460. (2007): Anleitung zur Erfassung von Makrophyten in Seen, Deutsche Fassung EN 15460 Hoesch, A., Buhle, M. (1996): Pilotstudie zur ökologischen Diagnose, Bewertung und Entwicklungsüberwachung oligo-, mesotropher und natürlich eutropher Seen Brandenburgs auf der Grundlage von Leitarten und Leitbiozönosen. Unveröff. Gutachten i.A. des Landesumweltamtes Brandenburg, 34 S.
- Kabus, T. (2011): Die Armleuchteralgen (Characeae) in ausgewählten Seen des Naturparks Stechlin-Ruppiner Land (Brandenburg, Deutschland). Ergebnisse aus FFH-Gebieten zwischen Rheinsberg und Luhme – Berichte der Botanischen Arbeitsgemeinschaft Südwestdeutschland. Beiheft 3: 19-30.
- Kaiser, K., Friedrich, J., Oldorff, S., Germer, S., Mauersberger, R., Natkhin, M., Hupfer, M., Pingel, A., Schönfelder, J., Spicher, V., Stüve, P., Vedder, F., Bens, O., Mietz, O, Hüttl, R.F. (2012): Aktuelle hydrologische Veränderungen von Seen in Nordostdeutschland: Wasserspiegeltrends, ökologische Konsequenzen, Handlungsmöglichkeiten. Grünewald, U., Bens, O., Fischer, H.; Hüttl, R.F., Kaiser, K., Knierim, A. (eds.): Wasserbezogene Anpassungsmaßnahmen an den Landschafts- und Klimawandel. Schweizerbart, Stuttgart, S.: 148-170.
- Korsch, H.; Raabe, U. & K. van de Weyer (2008): Verbreitungskarten der Characeen Deutschlands. Rostocker meeresbiologische Beiträge 19: 57-108.
- Korsch, H.; Doege, A; Raabe, U. & K. van de Weyer (2013): Rote Liste der Armleuchteralgen (Charophyceae) Deutschlands. Haussknechtia Beiheft 17, 33 S.
- Krausch, H. D. (1964): Die Pflanzengesellschaften des Stechlinsee-Gebietes I. Die Gesellschaften des offenen Wassers. Limnologica 2: 145-203.
- Oldorff, S., Päzolt, J. (2010): Nährstoffbelastung des Großen Stechlinsees von 1945 bis 2009 historische Daten, Bilanzierung und Neubewertung. GFZ Helmholtz-Zentrum, Potsdam, Scientific Technical Report STR10/10: 173-179.
- Spiess, H.-J. (2004): Die submerse Vegetation des Stechlinsees Methodik und Ergebnisse einer Tauchkartierung. Artenschutzreport 15: 39-44.
- Tauchclub Nehmitzsee e.V (2012): Naturkundliches Tauchen 2011-2012 unter Einbeziehung der Daten aus den Jahren 2008-2010, Bericht unveröffentlicht, Landesumweltamt Brandenburg. 6 S.
- van de Weyer, K. (2007): Die Bedeutung von Tauchuntersuchungen bei der Erfassung von Makrophyten in Seen und Fließgewässern. Deutsche Gesellschaft für Limnologie, Tagungsbericht 2006 (Dresden).
- van de Weyer, K.; Päzolt, J.; Tigges, P.; Raape, C. & E. Becker (2008): Investigatives Monitoring der submersen Makrophyten zur Vorbereitung von Maßnahmen zur Einhaltung des Verschlechterungsverbotes am Twernsee. Bericht unveröffentlicht, Landesumweltamt Brandenburg. 18 S.
- van de Weyer, K., Päzolt, J., Tigges, P., Raape, C., Oldorff, S. (2009): Flächenbilanzierung submerser Pflanzenbestände dargestellt am Beispiel des Großen Stechlinsees im Zeitraum von 1962 bis 2008. Naturschutz und Landschaftspflege in Brandenburg 18 (4): 137-142.

Internetdaten:

[1] http://www.lugv.brandenburg.de/cms/media.php/lbm1.a.3310.de/3140_neu_b.pdf

Deutsche Gesellschaft für Limnologie (DGL) Erweiterte Zusammenfassungen der Jahrestagung 2013 (Potsdam-Berlin), Hardegsen 2014

Hydromorphologische Erfassung und Klassifikation von Seen in Brandenburg

Wolfgang Ostendorp¹ & Jörg Ostendorp²

Keywords: WRRL, Hydromorphologie, Uferstruktur, Bewirtschaftungsplan, Maßnahmenprogramm

Einleitung

Die EG-Wasserrahmenrichtlinie fordert auch an Seen die Erfassung und Zustandsbeurteilung von hydromorphologischen Qualitätskomponenten (EG-WRRL 2000, Anhang V, Tab. 1.1.2). Im Einzelnen sind Merkmale des Wasserhaushalts, der Seebecken- und der Uferstruktur zu betrachten. Im Unterschied zur Situation an den Fließgewässern liegen an den deutschen Seen, aber auch im internationalen Umfeld wenige Erfahrungen vor, wie diese Vorgaben der EG-WRRL operational umgesetzt werden können.

An brandenburgischen Seen wird seit einigen Jahren flächendeckend das Verfahren zur *HydroMorphologischen* Erfassung, Klassifikation und Bewertung von Seen (HMS-Verfahren) angewandt und weiterentwickelt (Ostendorp et al. 2008, 2009). Die Arbeiten finden im Rahmen der *Gewässerentwicklungskonzepte* (kurz: GEKs; http://www.wasserblick.net/servlet/is/87936/) des Landesamts für Umwelt, Gesundheit und Verbraucherschutz (LUGV) Brandenburg statt, die nicht nur die Bewertung, sondern auch konkrete Maßnahmenvorschläge zur Minderung der hydromorphologischen Beeinträchtigungen beinhalten.

Wir berichten am Beispiel des GEK-Gebiets "Löcknitz – Untere Spree" (Planungsteam GEK2015, 2013) von den Ergebnissen und Erfahrungen, die mit wesentlichen Erweiterungen des ursprünglich publizierten Verfahrens gewonnen wurden ("HMS-Detailverfahren").

Methoden, Untersuchungsgebiet

Grundlagen des HMS-Verfahrens

Das HMS-Detailverfahren setzt sich aus vier Modulen zusammen, die die Anforderungen der EG-WRRL-Zustandserfassung aufnehmen (Tabelle 1). Das Verfahren kann grundsätzlich an allen Stillgewässer-Typen angewandt werden. Bisher liegen Erfahrungen für natürliche und künstliche sowie erheblich veränderte ("HMWB"), ganzjährig Wasser führende, tiefe und seichte Seen mit starken oder vernachlässigbaren Wasserstandsschwankungen vor, deren Ufer teils ein natürliches Relief mit höchstens extensiver land- oder forstwirtschaftlicher Nutzung aufweisen, teils aber auch durch flächenhafte Aufschüttungen, Uferbefestigungen und intensive urbane bzw. industrielle Nutzungen sehr stark verändert sind. Hierzu gehören auch kleinere, nicht berichtspflichtige Stillgewäs-

¹ Limnologisches Institut, Univ. Konstanz, Universitätsstr. 10, 78457 Konstanz, wolfgang.ostendorp@uni-konstanz.de, ² EcoDataDesign GbR, Birkenstrasse 50, 45133 Essen, joerg.ostendorp@ecodatadesign.de

ser sowie Flussseen, soweit sie nicht durch das Verfahren der Fließgewässerstrukturgüte erfasst werden. Das HMS-Detailverfahren wurde von uns an 50 natürlichen, künstlichen und erheblich veränderten Seen mit einer Uferlänge von rd. 335 km erprobt. Weitere Hinweise zur Erfassungs-, Klassifikations- und Bewertungsmethodik finden sich in den GEK-Berichten (z. B. Planungsteam GEK2015 2013) sowie in einem Handbuch (Ostendorp & Ostendorp 2014). Die nachfolgenden Ergebnisse beschränken sich auf das Modul HMS-LS (Uferstruktur).

Tab. 1: Module des HMS-Detailverfahrens. Erläuterungen s. Text.

Modul	Merkmalskomplexe	Merkmale
HMS-BM	beckenmorphologische Merkmale	Zahl der Seebecken und der Tiefenbecken; Lage und Ausdehnung von sublakustrischen Schwellen und Untiefen sowie der Inseln und Halbinseln; Seefläche; Seetiefe; Seevolumen; Uferlänge; Inter-Konnektivität
HMS-HY	hydrologische Merkmale	jährlich durchschnittliche Erneuerungsrate des Seevolumens; Seespiegelvariationen im Zeitskalenbereichen von ca. 1 Stunde bis 100 Jahren
HMS-LP	limnophysikalische Merkmale	Schichtungs- bzw. Zirkulationsregime, Trübung des Wasserkörpers, Salzgehalt
HMS-LS	uferstrukturelle Merkmale	strukturgebende (SO) und topografieverändernde Objekte (TO); strömungsbeeinträchtigte Flächen (SBF); Uferbefestigungen (UB), mit Berechnung eines Beeinträchtigungsindex' $1 \le I_{Obj} \le 5$; Objekte besonderer Bedeutung (o. Index)

Untersuchungsgebiet

Das GEK-Gebiet "Löcknitz (untere Spree)" (im Folgenden: GEK LOE) liegt zwischen der Oder-Elbe Wasserscheide und Erkner im Berlin-Fürstenwalder Urstromtal (Gem. Müncheberg, Grünheide, Erkner und Woltersdorf). Die westlich gelegenen Seen (vgl. Tabelle 2) wurden spätestens zu Anfang des 18. Jahrhunderts für die Holzflößerei staugeregelt. Seit 1873/75, nachdem ein Wehr, das die Seenkette um etwa 1,20 m aufgestaut hatte, abgerissen worden war, konnten die Seen mit Frachtschiffen und Ausflugsdampfern erreicht werden. Der Seespiegel schwankt heute nur noch um weniger als 0,1 m. Durch die günstige Anbindung an das Eisenbahn- und Stadtbahnnetz Berlins entwickelte sich die Region rasch zum beliebten Siedlungs- und Ausflugsgebiet. An den östlichen Seen ging die Entwicklung weitgehend vorbei. Östlich des Maxsees wurde seit Anfang des 19. Jahrhunderts ein Niedermoorgebiet schrittweise abgetorft, zuletzt mit Schwimmbaggern, bis ein eigenständiges künstliches Gewässer, der Torfsee Hoppegarten entstand.

Ergebnisse

Übersicht

Im GEK LOE wurden 6 berichtspflichtige natürliche (NWB) und ein künstlicher (AWB), nicht berichtpflichtiger See untersucht. Die gesamte Uferlänge betrug 34,283 km, die in 326 ca. 0,1 km langen Segmente (Kartiereinheiten) aufgeteilt wurde. Die Segmente bestehen aus den drei Subsegmenten der Sub-, Eu-, und Epilitoral-Zone. Aus einem Katalog von 297 Objekttypen (SO) konnten im Untersuchungsgebiet insgesamt 100 verschiedene Objekttypen identifiziert werden. Dabei wur-

den in einer Litoralfläche von $2,823 \text{ km}^2$ 1.419 Objekte mit einer jeweiligen Größe von wenigen Quadratmetern bis 8.100 m^2 erfasst.

Häufigkeit strukturgebender Objekte (SO)

An den Seeufern traten neben naturnahen, wenig veränderten Objekten, beispielsweise verschiedenen Wald- und Forsttypen, verbreitet Schadstrukturen (d. h. Objekte mit Beeinträchtigungsindex $I_{Obj} \geq 2,5$) auf, v. a. "Siedlung dörflicher Prägung", "Einzelstege (Pfahlstege)" und "Freizeitflächen ohne Infrastruktur" (Abb. 1). Die eu- und sublitorale naturnahe Vegetation (Schilfröhrichte, Teichrosendecken, Krebsscheren-Grundrasen) nahm dagegen nur vergleichsweise geringe Flächenanteile ein. Die Häufigkeitsverteilung der (Schad-)Objekttypen zeigt, dass die Ufer v. a. im Eu- und Epilitoral sehr stark durch Besiedlung (Ufergrundstücke mit Seeanstoß) und durch Freizeitnutzungen verändert sind.

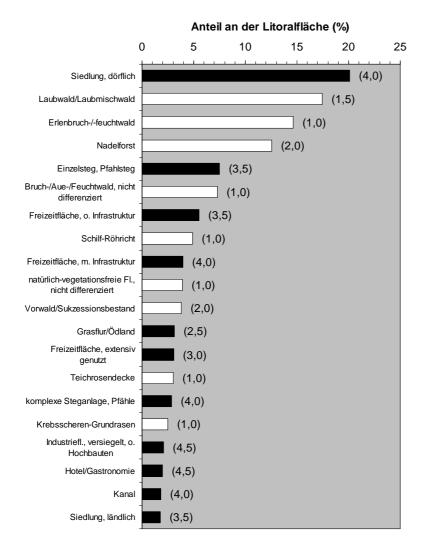


Abb. 1: Häufigkeitsverteilung der 20 flächenmäßig bedeutendsten strukturgebenden Objekttypen an den Ufern der sechs Seen im GEK Löcknitz (untere Spree); weisse Balken – unveränderte bis gering veränderte Objekte ($I_{Obj} < 2,5$), schwarze Balken – deutlich veränderte bis lebensfeindliche Objekte ($I_{Obj} \ge 2,5$, "Schadobjekte"); die Zahlen in Klammern verweisen auf den Basis-Index der Objekttypen.

Topografieverändernde Objekte (TO)

Zu den topographieverändernden Objekten gehören verschiedene Arten von Materialauffüllungen oder -entnahmen im Sub- und Eulitoral der Seeufer, die das uferquere Relief, mitunter sogar die Uferlinienführung erheblich verändern. Insgesamt konnte 41 solcher Objekte ermittelt werden, die eine Fläche von rd. 23.700 m², entsprechend 2,2 % der betroffenen Eu- und Sublitoralfläche einnehmen (Tab. 2). Die Zahlen zeigen, dass – im Vergleich zu den Seen anderer GEK-Gebiete – recht große Litoralbereiche durch Auffüllungen oder Abgrabungen beseitigt bzw. stark verändert wurden.

Strömungsbeeinträchtigte Flächen (SBF)

Bei den SBF handelt es sich um Flächen des Eu- und Sublitorals, deren Strömungsbedingungen durch undurchlässige Uferquerbauwerke verändert wurden, so dass sich die Erosions-/Akkumulationsbedingungen verändern und Stillwasser-Arten des Makrophytobenthos, des Makrozoobenthos und der Fischfauna gegenüber Arten des bewegten Wassers begünstigt werden könnten. Insgesamt wurden 17 solcher Flächen identifiziert, die rd. 30.300 m² einnahmen, entsprechend 2,6 % der betroffenen Litoralfläche (Tab. 2).

Uferverbau

Von der 34,283 km langen Uferstrecke aller Seen waren 9,425 km befestigt, was einem mittleren Verbauungsgrad von 27,5 % entspricht. Die Uferverbauungen dienen vornehmlich der wasserbaulichen Sicherung von Aufschüttungen und Landgewinnungen sowie dem erleichterten Zugang der Nutzer zu Booten und zum badetiefen Wasser. Im Einzelnen kamen sehr unterschiedliche Bauweisen zur Anwendung, überwiegend ein massiver Verbau mit Beton und Mauerwerk (Abb. 2).

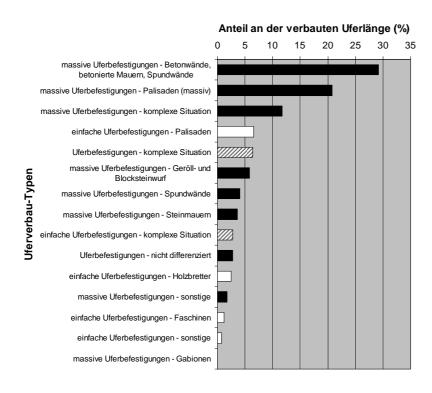


Abb. 2: Anteile verschiedener Typen des Uferverbaus an den Seeufern im GEK Löcknitz (untere Spree); schwarze Balken – massiver Verbau, weisse Balken – einfacher Verbau, schraffierte Balken – komplexe Situation mit verschiedenartigen Verbautypen.

Mittlere Beeinträchtigungsindizes der Seen

Durch gewichtete Verrechnung der Anteile der SO, TO, SBF an der Fläche bzw. der Uferverbauungen (UB) an der Uferlänge der Subsegmente wurde der mittlere Beeinträchtigungsindex I_{Ssg} einer jeden Kartiereinheiten (Subsegment) mit $1 \le I_{Ssg} \le 5$ berechnet. Durch arithmetische Mittelwertbildung wurde der mittlere Beeinträchtigungsindex I_{Sz} einer jeden Subzone des Sees ermittelt (Tab. 2). Hierbei zeigte sich, dass das Sublitoral strukturell bedeutend weniger verändert ist als das Eulitoral. Die größten Beeinträchtigungen liegen regelmäßig im Epilitoral, d. h. in einem ufernahen Gürtel von 50 m Breite. Dieses Ergebnis ist verständlich, wenn man bedenkt, dass aus alltagspraktischen Gründen die ständig wasserbedeckte Zone nicht so intensiv umgestaltet und so vielfältig genutzt werden kann wie die landfeste Uferzone. Der am weitesten talabwärts gelegene Flakensee ist besonders stark beeinträchtigt; hier liegen 10 % der 52 eulitoralen Subsegmente oberhalb eines Index-Wertes von knapp 4,0. Der vom Oberlauf der Löcknitz durchflossene Maxsee ist uferstrukturell am

wenigsten verändert. Bei der Strukturklassifikation des Torfsees Hoppegarten wird von der künstlichen Entstehung seiner Ufer abgesehen; nur die darüber hinaus gehenden Einbauten (z. B. Verladequai) und Nutzungsstrukturen (Angelansitze, Seezugänge, Kleingärten u. a.) werden in die Klassifikation einbezogen.

Tab. 2: Zusammenstellung der Klassifikationsergebnisse der Seen im GEK-Gebiet LOE in stromaufwärtiger Reihenfolge. Dargestellt sind (i) der Anteil der topografieverändernden Objekte (TO) und (ii) der strömungsbeeinträchtigten Flächen an der Sub- und Eulitoralfläche, und (iii) der Anteil der verbaute Uferlinie (UB) an der gesamten Uferlinie, jeweils in %; der rechte Teil der Tabelle enthält die Index-Mittelwerte ± einf. Standardabweichungen (I_{Sz}) für n Subsegmente der Beeinträchtigungsindizes in der Sub-, Eu- und Epilitoralzone, sowie den Q₉₀-Wert, oberhalb dessen die 10 % der höchsten Index-Werte bzw. der am stärksten veränderten Subsegmente liegen.

	ТО	SBF	-	Sublitor	al	Eulitora	.1	Epilitora	ıl
	(%)	(%)	(%)	I_{Sz}	Q ₉₀	I_{Sz}	Q ₉₀	I_{Sz}	Q ₉₀
Flakensee (NWB), n=52	9,1	9,9	30,4	$1,92 \pm 0,69$	2,81	$2,78 \pm 0,98$	3,98	$3,16 \pm 0,98$	4,11
Werlsee (NWB), n=38	1,1	5,0	17,2	$1,80 \pm 0,28$	2,16	$2,44 \pm 0,80$	3,44	$3,11 \pm 0,91$	4,10
Peetzsee (NWB), n=44	1,2	0,2	42,1	$2,01 \pm 0,34$	2,47	$3,13 \pm 0,61$	3,70	$3,52 \pm 0,64$	4,00
Möllensee (NWB), n=64	0,8	0,4	7,2	$1,52 \pm 0,18$	1,67	$1,68 \pm 0,68$	2,90	$2,09 \pm 0,87$	3,46
Liebenberger See (NWB), n=39	1,0	1,3	1,6	$1,51 \pm 0,20$	1,60	$1,64 \pm 0,44$	1,80	$2,40 \pm 0,65$	3,12
Maxsee (NWB), n=33	0,0	0,0	0,4	$1,51 \pm 0,03$	1,52	$1,63 \pm 0,36$	1,92	$1,65 \pm 0,54$	2,25
Torfsee Hoppegarten (AWB), n=56	entf.	0,0	2,3	1,37± 0,18	1,50	1,37± 0,35	1,75	$1,87 \pm 0,59$	2,64

Diskussion und Ausblick

Am Beispiel der Seen im GEK LOE wurde gezeigt, dass eine detailgenaue Erfassung und eine nachvollziehbare Klassifikation (Index-Berechnung) der Uferstruktur möglich und aussagekräftig sind. Sie stellt den Ausgangspunkt für eine Defizitbewertung ("Handlungsbedarf ja/nein") sowie für fachlich begründete Maßnahmenempfehlungen im Rahmen der Bewirtschaftungspläne des GEK-Gebiets dar. Zu den künftigen Forschungsaufgaben gehört die Verknüpfung der Struktur-Daten mit den biotischen Qualitätskomponenten der EG-WRRL. Die Erfahrungen, die bei der Bearbeitung der Seen brandenburgischer GEK-Gebiete gemacht wurden, fließen in eine Methodenanleitung ein (Ostendorp & Ostendorp 2014), die auch in anderen Seengebieten Deutschlands anwendbar ist.

Literatur

Ostendorp, W., Ostendorp, J. (2014): Hydromorphologische Erfassung und Klassifikation von Seen. Teil 2: HMS-Manual. Bericht für das Landesamt für Umwelt, Gesundheit und Verbraucherschutz (LUGV) Brandenburg, in Vorbereitung.

Ostendorp, W., Ostendorp, J., Dienst, M. (2008): Hydromorphologische Übersichtserfassung, Klassifikation und Bewertung von Seeufern. Wasserwirtschaft Jg. 2008, H. 1-2: 8–12.

Ostendorp, W., Dienst, M., Spitzbarth, H., Ostendorp, J. (2009): Naturschutzfachliche Interpretationsmöglichkeiten gewässerstruktureller Seeuferkartierungen am Beispiel des HMS-Verfahrens. Natur und Landschaft 84: 9-16.

Planungsteam GEK2015 (2013): Gewässerentwicklungskonzept Löcknitz (untere Spree). Bericht für das Landesamt für Umwelt, Gesundheit und Verbraucherschutz (LUGV) Brandenburg. Essen, 301 S. + Kartenanhänge (Download unter www.wasserblick.net, Suchbegriff, Löcknitz untere Spree').

Langzeitmonitoring der submersen Makrophyten in den Fließgewässern der Friedberger Au (bei Augsburg) im Zeitraum 1972 - 2012

Dagmar Seibold1, Klaus Schmieder1, Alexander Kohler, 1 Eszter Falusi2, Karoli Penksza2, Georg Heinrich Zeltner1 & Uwe Veit 1

1 Institut für Landschaftsökologie und Vegetationskunde, Hohenheim, d.seibold@uni-hohenheim.de, klaus.schmieder@uni-hohenheim.de, 2 Universität Gödollö, falusi.eszter@kti.szie.hu

Keywords: Langzeitmonitoring, submerse Makrophyten, Fließgewässer

Einleitung

Das Arteninventar und die Verbreitung der submersen Makrophyten in den Fließgewässern der Friedberger Au waren Gegenstand eines 40-jährigen Langzeitmonitoring. In diesem Zeitraum wurden insgesamt neun Mal alle Arten während der Vegetationsperiode aufgenommen, kartiert und nach verschiedenen Verfahren ausgewertet (siehe u.a. KOHLER et al. 1974, KOHLER et al. 1989, VEIT et al. 1997).

Die Ausgangssituation 1972 war gekennzeichnet von oligotrophen Grundwassergräben und Bereichen des Hauptflusses Friedberger Ach, die durch die fast ungeklärten Abwässer der Stadt Friedberg völlig verödet und makrophytenfrei waren. Erst nach dem Wegfall dieser Abwässer 1973 stellt sich langsam eine Wiederbesiedelung der Flussstrecke ein.

Die vier untersuchten Fließgewässer liegen in der Friedberger Au nordöstlich von Augsburg zwischen Lech und Tertiärem Hügelland. Sie gehören dem Typ der kalkreichen Niedermoorfließgewässer an. Der Hauptfluss Friedberger Ach mündet bei Marxheim in die Donau, die grundwasserbeeinflussten Gräben Hörgelaugraben und Höhgraben verlaufen sich in den Lechschottern. Der Forellenbach mündet südlich von Mühlhausen in die Friedberger Ach (Abbildung 1).



Abbildung 1: Das Untersuchungsgebiet, Fließrichtung der Gewässer ist von Süd nach Nord

Fließrichtung

Ziel der Arbeit war es, den Bestand der submersen Makrophyten in den Fließgewässern der Friedberger Au in seiner Grundgesamtheit mit Hilfe einer einheitlichen Methode zu erfassen und anschließend auszuwerten. Insgesamt wurden neun Datensätze aus einem 40-jährigen Kartierzeitraum über verschiedene Methoden (KOHLER & JANAUER 1995) miteinander verglichen und ausgewertet. Dadurch konnten Veränderungen in den Artenmustern analysiert und bewertet werden.

Material und Methoden

Untersuchungsgebiet

Innerhalb des 40-jährigen Kartierzeitraums wurden die Makrophyten der Fließgewässer neun Mal aufgenommen und kartiert (KOHLER & JANAUER 1995). Die Fließgewässer werden in ökologisch in sich einheitliche Abschnitte unterschiedlicher Länge eingeteilt und in eine topographische Karte (1:25 000) eingetragen. Soweit zugänglich wurden die Abschnitte mit einer Wathose abgeschritten. Für jeden Abschnitt wird eine Gesamtartenliste aller Hydrophyten, Amphiphyten, Helophyten und Algen erstellt und für die einzelnen Arten mit einer einfachen Skala die Abundanz (Häufigkeit) geschätzt (Abbildung 1). Kennzeichnend für die verwendete Methode ist, dass nicht ausgewählte Probeflächen sondern die Grundgesamtheit der Makrophytenarten im bearbeiteten Flusssystem aufgenommen werden. Dabei werden auch vegetationsfreie Bereiche erfasst. Dieses Verfahren erwies sich auch zur Beobachtung der Wiederbesiedelung einer Verödungszone als aussagekräftig. (Abbildung 4). Die Verbreitungsmuster der Makrophyten wurden graphisch in Balkendiagrammen dargestellt, wozu die fünfstufige Skala in eine dreistufige zusammengefasst wurde (Tabelle 1). Die Vergleichbarkeit der Ergebnisse dürfte damit gegeben sein, dass alle neun Kartierungen mit der gleichen Methode durchgeführt wurden und die Einweisung in die Geländemethodik jedes Mal von derselben Person erfolgte (G.-H. ZELTNER, Universität Hohenheim).

Für die quantitative Auswertung wurde eine Reihe von Parametern berechnet. Die ordinale, fünfstufige Skala nach KOHLER & JANAUER (1995) wird in die quantitative Entsprechung Q nach MEL- ZER (1988) umgewandelt, welche in etwa einer Funktion von $f(x)=x^3$ folgt (Tabelle 1)

Tabelle 1: Die verwendeten Skalen

ordinale Schätzskala (Abundanz)	numerische Entsprechung ("Q")	Vereinfachte Darstellung nach
nach Kohler & JANAUER (1995)	nach Melzer (1988)	Kohler (1978)
1 = sehr selten	1	selten
2 = selten	8	
3 = verbreitet	27	verbreitet
4 = häufig	64	häufig
5 = sehr häufig bis massenhaft	125	

Weiter wurden die Daten quantitativ über mehrere Kennzahlen ausgewertet.

Relative Areallänge (Lr)

Die "Relative Areallänge" gibt Auskunft über die besiedelte Flusslänge einer Art im Verhältnis zum gesamten betrachteten Gewässerbereich oder dem gesamten Flusssystem.

Relative Pflanzenmenge (RPM)

Die "Relative Pflanzenmenge" stellt den prozentualen Anteil der Pflanzenmenge einer Art im Verhältnis zur Gesamtpflanzenmenge aller Arten im betrachteten Fließgewässerbereich oder Flusssystem dar.

Floristisch – ökologische Flusszonen

Die floristisch ökologischen Flusszonen wurden auf Basis von ökologischen Reihen ausgewiesen. Für diese wurden von KOHLER et al. (1974) die Makrophytenarten nach steigenden Nährstoffkonzentrationen (PO4, NH4) ihrer Standorte aufgereiht. Daraus wurden Zonen unterschiedlichen trophischen Niveaus definiert (Tabelle 2).

Tabelle 2: Floristisch – ökologische Flusszonen mit ihren charakterisierenden Artengruppen und ihr Eutrophie- rungsgrad. P. coloratus HORNEM., M.aquatica L., G. densa (L.) Fourr., E. canadensis MICHX., Z. palustris L.

	Zone A	Zone B	Zone C	Zone D	Zone E
Eutrophierungsgrad	oligotroph	oligo-	m e so tro ph	meso -	eutroph
des Wassers		mesotroph		eutroph	
Pota mogeton					
coloratus - Gruppe					
Mentha aquotica -		_			
Gruppe					
Groenlandia densa	_		_		
- Gruppe					
Elodea canadensis					
- Gruppe					
Zannichellia				1	
polustris - Gruppe					

Ergebnisse

Friedberger Ach – ehem. Verödungszone

Seit der Abstellung der Einleitungen aus der Kläranlage 1973 fand eine Makrophyten - Wiederbesiedlung in der fast vier Kilometer langen Verödungszone statt. Während 1972 der Bereich weitgehend makrophytenfrei war, konnten in der ersten Wiederholungskartierung 1978 bereits drei Hydrophyten und acht Amphiphyten entdeckt werden. Ranunculus trichophyllus CHAIX und Elodea canadensis waren die Erstbesiedler. Festzustellen ist, dass einzelne Arten im

40-jährigen Untersuchungszeitraum spontan auftreten, zur Dominanz gelangen und nach einigen Jahren wieder verschwinden. Die Zahl der Hydrophyten erhöht sich im Untersuchungszeitraum auf fünf bis sieben Arten. Sie liegt aber nach wie vor unter denen der anderen Flussbereiche der Friedberger Ach (etwa zehn Arten).

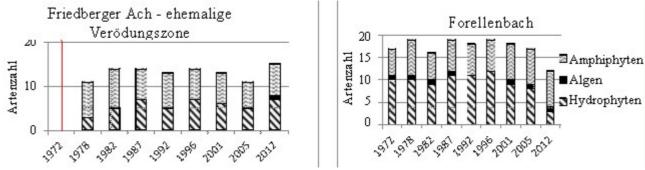
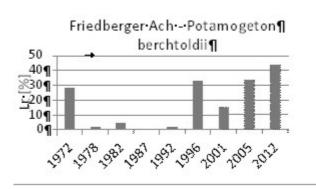


Abbildung 2: Artenzahlen in der ehem. Verödungszone der Abbildung 3: Artenzahlen im gesamten Forellenbach Friedberger Ach. Senkrechte Linie markiert den Zeitpunkt des Wegfalls der Abwässer

In den Relativen Pflanzenmengen der Friedberger Ach ergab sich eine Verschiebung der Arten. War 1972 noch Elodea canadensis die Art mit der höchsten Pflanzenmenge, so ist sie 2012 nur noch spärlich vertreten. 2012 dominieren Potamogeton pectinatus L. und Phalaris arundinacea L. sowie Zannichellia palustris L. Insgesamt dominieren nun die Hydrophyten, während die Amphiphyten zurückgehen.

Abschnittsnr.	Wue	hs-	Jahr	34a	32	33a	33	32	3	31	30	29	87	27.2
Abschnittslänge	fo	rm		200	250	220	175	928	225	250	900	350	225	725
Elo can	Hyd	E	1972	п	n	n		F2 - S		10	9	12	(533	
			1978	п		D		- 3 - 3		900				
			1982	n		8-2		3 3		100	9		- 53	
			1987	n				19-19		300	Ŷ	*	-033	9
			1992	253	3	8 8		- 13 - 33			r i	*	5533	
			1996	353	3			100		900 .	Ŷ	**	5337	0
			2001	333	3			10.0		300	Ŷ	*	5939	0
			2005	200	3	8 8		400.0	n		r i	**	5332	
			2012	333	3			7 3		18		2	5937	00
Ran tri	Hyd	E	1972	n	n	n				Ī		Ĭ		
	.90		1978	n		D.							7.50	
			1982	n		500000				1		j.		
			1987	n						1		Ž.		
			1992	700		0 0		12 1		1	j)i	Ü.		
			1996					10.0		1		ĵ.	106	30
			2001			I I								
			2005						D	10.				
			2012	10.1						1			1.0	i i


Abbildung 4: Ausschnitt aus dem Verbreitungsdiagramm für die ehem. Verödungszone der Friedberger Ach. Die Dicke der schwarzen Balken siegelt die Abundanz wider. n = nicht kartierte Bereiche. Elo can =Elodea canadensis, Ran tri = Ranunculus trichophyllus; Hyd = Hydrophyt

Forellenbach

In den ursprünglich oligotrophen Grundwassergräben geht die Zahl der Hydrophyten seit 2001 stetig zurück. Im Forellenbach wurden 2012 nur noch drei Hydrophytenarten gefunden, was nur noch ¼ der ursprünglichen Artenzahl entspricht. Durch Trockenfallen längerer Kartierabschnitte verlieren Hydrophyten an Lebensraum. Eine Vielzahl an Amphiphyten und Helophyten zeigen Verlandungstendenzen an.

Entwicklung ausgewählter Arten

Seit 1996 breitet sich Potamogeton berchtoldii über weite Gewässerbereiche insbesondere der Friedberger Ach aus, was in der "Relativen Areallänge" erkennbar ist (Abbildung 5, Abbildung 6).

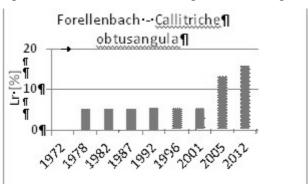


Abbildung 5: Relative Areallängen (Lr in %) von Potamoge- Abbildung 6: Relative Areallängen (Lr in %) von Callitriche ton berchtoldii in der gesamten Friedberger Ach

obtusangula im gesamten Forellenbach

Potamogeton berchtoldii kam in der Ausgangskartierung in fast 30% der Fließstrecke der Friedberger Ach vor. In den darauffolgenden Jahren verringerten sich seine Bestände deutlich. Erst 1996 besiedelt sie wieder weitere Strecken und ist 2012 in über 40% der Fließstrecke.

In der Ausgangskartierung 1972 kam Callitriche obtusangula LE GALL nicht in den untersuchten Fließgewässern vor. Im Jahr 1973 wurden einige Exemplare im unteren Bereich des Forellenbachs und in der Friedberger Ach nach der Einmündung des Forellenbaches ausgepflanzt (BRINKMANN und ZELTNER). Von dort aus breitete sie sich langsam aus. Bei der ersten Wiederholungskartierung besiedelte sie den Abschnitt um den Auspflanzort, über etwa 100 m Flussstrecke. Auf diesen Standort beschränkte sie

sich über 20 Jahre lang. Erst 2005 gelang es ihr, im unteren Bereich des Baches flussaufwärts ihr Areal auszudehnen. 2012 wurde Callitriche obtusangula dann im Forellenbach in den drei Kartierabschnitten zwischen Dickelsmoor und der Mündung in die Friedberger Ach gefunden.

Die Rote Liste 2 Art Potamogeton coloratus hat insbesondere im Forellenbach einen letzten wichtigen Standort. Hier hält sich die Art seit der Anfangskartierung, ist jedoch seit 1996 in ihrem Besiedelungsareal zurückgegangen. Sie kommt im Forellenbach parallel zu Elodea canadensis vor und

Abschnittsnr.	Wuo	hs-	Jahr	13	Ξ	9	6		ω	7b	7a	9	5a	Ω,	+ 5	3a2	3a1	2	_
Abschnittslänge	for	m		200	450	450	300	75	125	250	125	009	275	G77	070	225	125	375	250
Pot col	Hyd	Е	1972					n							T	n	n		
301-76-74-50m St. Sa.			1978					n											
			1982					n							=				
			1987					n							٦.				
			1992				n	n							٦L				
			1996					n							=				
			2001					n							4				
			2005					n								n			
			2012					n						2		n			

Abbildung 7: Verbreitungsdiagramm von Potamogeton coloratus im gesamten Forellenbach. Die Dicke der schwarzen Balken spiegelt die Abundanz wider. n = nicht kartierte Bereiche. Pot col = Potamogeton coloratus, Hyd = Hydrophyt

ist die kennzeichnende Art der Zone A. Darüber hinaus kommt die Art noch in Höhgraben, Hörgelaugraben und im Quellbereich der Friedberger Ach vor.

Floristisch-ökologische Flusszonen

Während 1972 die Grundwassergräben fast ausschließlich der oligotrophen Zone A angehörten, sind diese mittlerweile bis auf den Forellenbach mit den Zonen B und E eingeteilt. In der völlig überlasteten Verödungszone V hat sich hingegen eine eutraphente Vegetation der Zone E etabliert. Allgemein verschieben sich mit den charakterisierenden Arten (Abbildung 8) die Zonen B und E. Letztere ist insbesondere in der Friedberger Ach dominierend.

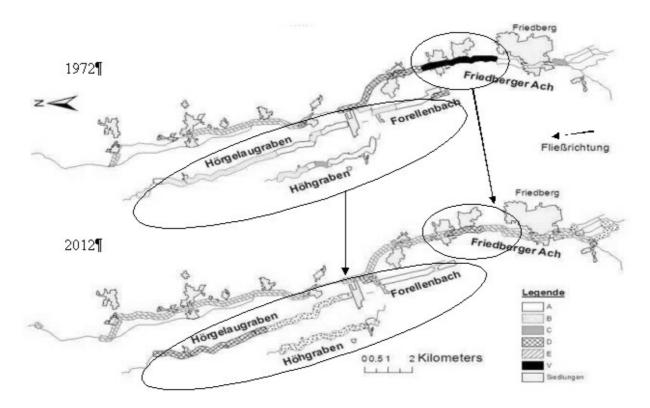


Abbildung 8: Floristisch-ökologische Flusszonen (A-E) 1972 und 2012. Umkreiste Gebiete liegen im Fokus dieser Ausführung.

Diskussion

Die vorliegende Arbeit dokumentiert die Veränderungen der Artenzusammensetzung und Verbreitung der Makrophyten der Friedberger Au der vergangenen Jahrzehnte. Vor allem in den letzten 20

Jahren hat sich die Artenzusammensetzung in großen Teilen der untersuchten Fließgewässer verändert. Die Verbreitungsmuster submerser Makrophyten sind nicht zufällig, sondern folgen Standorteigenschaften. Dass die Arten nur in den jeweiligen trophischen Zonen gut wachsen können, in denen sie tatsächlich auch kartiert wurden, ist durch mehrere Auspflanzversuche belegt worden (GLÄNZER 1977, SCHWEINITZ 2013, n.p.). Seit einigen Jahren verschieben sich die Verbreitungsmus- ter einiger Arten: Sie breiten sich in Standorte aus, die auch von Arten anderer trophischer Ansprü- che besiedelt werden. Insbesondere die charakterisierenden Arten Potamogeton berchtoldii und Callitriche obtusangula sind deutlich in der Ausbreitung begriffen, wodurch sich eine Verschiebung der trophischen Zonen ergibt. Das bestätigt die Tendenzen, dass sich die Trophie in Fließgewässern seit Jahren auf Kosten der oligotraphenten Arten und der Artendiversität insgesamt nivelliert (STEFFEN et al. 2013). In der ehemaligen Verödungszone fielen 1973 die verursachenden Abwässer weg und ermöglichten die Beobachtung einer sukzessiven Wiederbe- siedelung. Belastete Bereiche werden durch den Bau von Kläranlagen verbessert, oligotrophe bis mesotrophe Bereiche aber u.a. durch die diffusen Einträge aus der Landwirtschaft gefährdet. Dies kann den Rückgang der oligotrophen Zonen A und B erklären. Neue Untersuchungen über die Standortpräferenzen der betreffenden Arten wie sie in jüngerer Vergangenheit in Naab und Pfreimd (POSCHLOD et al. 2010) durchgeführt wurden, wären sinnvoll. In den Grundwassergräben sind Verlandungstendenzen erkennbar, welche den Rückgang der Hydrophytenarten bedingen können. Regelmäßige Räumarbeiten können dieser Entwicklung entgegenwirken. Da die wenigsten Makrophyten eine peristente Samenbank aufbauen (SCHWEINITZ 2013, n.p.) müssen hierbei Bereiche

belassen werden, die als Ausgangspunkt für eine Wiederbesiedelung der Grundwassergräben dienen. Für die Gräben mit ihren gefährdeten Arten sind die Erhaltung der Wasserqualität, Vermeidung der Einleitung von Nährstoffen sowie das Verhindern einer Grundwasserspiegelabsenkung notwendig.

Danksagung

Die vorliegende Arbeit entstand im Rahmen einer Masterarbeit (SEIBOLD, 2013 n.p.).

Ein Langzeitmonitoring ist nicht allein zu schaffen, sondern bedarf der Hilfe zahlreicher fleißiger Mitarbeiter. An dieser Stelle sei insbesondere den folgenden Personen gedankt: Brinkmeier, R., Beisl, E., Schiele, S., Warnek, L., Pensel, T., Horst, B., Wetter, C., Hiltscher, H., Mück, J.

Vielen Dank aber auch an alle, die mit Rat und Tat zum Gelingen der Arbeit beigetragen haben!

Literatur

- GLÄNZER, U., HABER, W., KOHLER, A. (1977): Experimentelle Untersuchungen zur Belastbarkeit submerser Fließgewässer Makrophyten, Arch. Hydrobiol. 79, 2: 193-232
- KOHLER, A., BRINKMEIER, R. & VOLLRATH, H. (1974): Verbreitung und Indikatorwert der submersen Makrophyten in den Fließgewässern der Friedberger Au. Ber. Bayer. Bot. Ges., 45: 5-36
- KOHLER, A., WARNEK, L. & ZELTNER, G.-H. (1989): Veränderungen von Flora und Vegetation in den kalkreichen Fließgewässern der Friedberger Au. Arch. Hydrobiol. Suppl. 83 (Monographische Beiträge), 3:407-451, Stuttgart.
- KOHLER, A. & JANAUER, G. (1995): Zur Methodik der Untersuchungen von aquatischen Makrophyten in Fließgewässern. In: Steinberg, C., Bernhardt, H., Klapper H. (Hrsg): Handbuch angewandte Limnologie 3. Ecomed-Verlag, 22 S.
- MELZER, A. (1988): Die Gewässerbeurteilung bayerischer Seen mit Hilfe makrophytischer Wasserpflanzen. In: Gefährdung und Schutz von Gewässern. Tagung über Umweltforschung an der Universität Hohenheim, Ulmer Verlag, Stuttgart. S. 105 116.
- POSCHLOD, P., KOS, M., ROAUER, S., SEEMANN, A., WIESMANN, O., ZELTNER, G.H., KOHLER, A. (2010): Long-term monitoring in rivers of South Germany since the 1970s Macrophytes as Indicators for the assessment of water quality and its implications for the conservation of rivers. In: Müller, F., Baessler, C., Schubert, H., Klotz, S. (Hrsg.)(2010): Long-term ecology research, 2010, Springer Science+ Business Media B.V., S. 189-199. DOI: 10.1007/978-90-481-8782-9, ch. 14
- SCHWEINITZ, P. (2013): The macrophyte vegetation of the Moosach's river system (Munich gravel plain) and its dynamics between 1970 and 2010. Universität Regensburg, Unveröffentlichte Diplomarbeit, 137 S.
- SEIBOLD, D. (2013): Langzeitmonitoring der submersen Makrophyten in den Fließgewässern der Friedberger Au im Zeitraum 1974-2012. Universität Hohenheim, Unveröffentlichte Masterarbeit, 105 S.
- STEFFEN, K., BECKER, T., HERR, W., & LEUSCHNER, C. (2013): Diversity loss in the macrophyte vegetation of northwest german streams and rivers between the 1950s and 2010. Hydrobiologia, 713(1), 1-17.
- VEIT, U., ZELTNER, G.-H., KOHLER, A. (1997): Die Makrophyten-Vegetation des Fließgewässersystems der Friedberger Au (bei Augsburg). Ihre Entwicklung und Veränderung. Berichte des Instituts für Landschafts- und Pflanzenökologie der Universität Hohenheim, Beiheft 4, 1997, Hohenheim. S. 7-241.

Deutsche Gesellschaft für Limnologie (DGL) Erweiterte Zusammenfassungen der Jahrestagung 2013 (Potsdam-Berlin), Hardegsen 2014

120 Jahre Langzeit-Untersuchungen der Besiedlung mit Algen im Großen Müggelsee (Berlin)

Lothar Täuscher

Institut für angewandte Gewässerökologie GmbH, Schlunkendorfer Straße 2e, 14554 Seddiner See, e-mail: lo-thar.taeuscher@iag-gmbh.info

Keywords: Algen, Phytoplankton, Phytobenthos, Langzeit-Untersuchungen, Großer Müggelsee, Berlin

Abstract:

120 years long-term monitoring of the algal settlement in the Lake Großer Müggelsee (Berlin)

The Lake Großer Müggelsee is a shallow, polymictic riverin lake of the River Spree with an area of 7.66 km², a mean depth of 4.8 m and a maximum depth of 8.9 m. The Friedrichshagen Waterworks and the Biologische und Fischereiversuchsstation Müggelsee des Deutschen Fischerei-Vereins (since 1906 Königliches Institut für Binnenfischerei) were founded in 1893. The first algologists / phycologists were Paul Hennings (1841-1908), Otto Müller (1837-1917), Ernst Lemmermann (1867-1915), Edmund Rehbronn (1909-1981) and Ernst Vorkastner with studies on diatoms, planktic and benthic micro and macro algae in 1893, 1895, 1896, 1903, 1937 and 1938. After World War II algologists / phycologists, limnologists, botanists and scientists of inland fishery from the Institute of Inland Fisheries (1947-1991), from the Department of Hydrology at the Institute of Geography and Geoecology (1976-1991), from the Department Ecophysiology/Ecology at the Humboldt University (1976-2000), from the Institute of Water Management (1952-1990), from the Water Management Board (Oberflussmeisterei Berlin and Wasserwirtschaftsdirektion Oder-Havel) and from the Leibniz Institute of Freshwater Ecology and Inland Fisheries (since 1992) have made important contributions to the monitoring of planktic and benthic algal settlement in the Lake Großer Müggelsee. In 120 years in different papers species of cyanobacteria/blue-green algae, golden algae, yellow green algae, eustigmatophycean algae, diatoms, cryptomonads, dinoflagellats, green algae, desmids and euglenoids have been listed. The developments and changes of algal settlement in the lake and the use for the bioindication of the aut- and synecological characterisation of some algal species and algal communities for the ecological status of the water are important. In the quantitative assessment the cyanobacteria/blue-green algae and the diatoms play a great role. The coccal green algae in the Lake Großer Müggelsee are a species rich group.

Einleitung

Über die Algenbesiedlung des Großen Müggelsees in Berlin liegen seit 1893 (Gründung der Biologischen und Fischereiversuchsstation Müggelsee des Deutschen Fischerei-Vereins – s. Steffens & Schäperclaus 1993 - und des Wasserwerkes Berlin-Friedrichshagen - s. Berliner Wasser-Betriebe et al. 1993) Befunde vor. Bereits 1977 hatte der Verfasser in einem Forschungsbericht (der leider nicht

veröffentlicht wurde – eingereicht für das "Archiv für Protistenkunde": Ablehnung wegen fehlender Druckkapazitäten!) die Veränderungen in der Algenbesiedlung in diesem Fluss-Flachsee der Spree dokumentiert (Täuscher 1977). An den umfangreichen Untersuchungen waren/sind verschiedene Institutionen/Einrichtungen und zahlreiche Phykologen, Limnologen, Botaniker und Fischereiwissenschaftler beteiligt. Die Leistungen und Beiträge von verstorbenen und lebenden Algenforschern werden chronologisch genannt.

Im Folgenden wird aufgezeigt, wie diese Dokumentationen zu den historischen und aktuellen Untersuchungen der Algenbesiedlung im Großen Müggelsee als Grundlagen zur Erfassung der Biodiversität und zur Bioindikation des ökologischen Zustandes genutzt werden können.

Material und Methoden

Untersuchungsgebiet

Der Große Müggelsee, der größte See von Berlin, mit einer Fläche (incl. "Die Bänke") von 766 ha/7.66 km², einer mittleren Tiefe von 4,8 m und einer maximalen Tiefe von 8,9 m (Jahn et al. 2005) ist ein polymiktischer Fluss-Flachsee, der von Südost nach Nordwest von der Spree durchflossen wird (Driescher et al. in Behrendt & Nixdorf 1993, Köhler et al. 2002, 2005, Schellenberger 1981, Täuscher 1980).

Bibliographie der phykologischen Untersuchungen

Die Literaturzitate der Algenuntersuchungen im Großen Müggelsee sind in Geissler & Kies (2003) und Täuscher (1980) zu finden.

Ergebnisse

Chronologie der phykologischen Untersuchungen vor dem 2. Weltkrieg

Der Kryptogamen-Autodidakt Paul Christoph Hennings (1841-1908), der ab Oktober 1880 an der Friedrich-Wilhelm-Universität zu Berlin als Kustos und später als Professor tätig war, legte eine Sammlung von Algen in zwei Faszikeln an ("Phycotheca marchica": Fasc. I 1893: Nr. 1-50; Fasc. II 1906: Nr. 51-100) (s. Täuscher 2009a) und veröffentlichte 1893 "Die Algenflora des Müggelsees".

Georg Ferdinand Otto Müller (1837-1917) untersuchte von April bis Oktober 1894 die Kieselalgen im Müggelsee und veröffentlichte 1895 diese Erfassungen. Dem Diatomeen-Autodidakten wurde 1897 von der Friedrich-Wilhelm-Universität zu Berlin der Doctor honoris causa verliehen und 1907 wurde er zum Professor bestellt. Diatomeen-Belege aus dem Großen Müggelsee befinden sich im Herbarium des Botanischen Gartens und Botanischen Museums Berlin-Dahlem - B - der Freien Universität Berlin (s. Jahn 2002).

Von Ernst Johann Lemmermann (1867-1915) gibt es zwei Veröffentlichungen über das Phytoplankton des Müggelsees (Lemmermann 1896, 1903). Für *Desmodesmus perforatus* (Lemmermann) Hegewald = *Scenedesmus perforatus* Lemmermann ist der Große Müggelsee der "locus classicus". Dem Phykologie-Autodidakten, Lehrer und Museumsmitarbeiter in Bremen wurde 1909 von der Westfälischen Wilhelms-Universität in Münster der Doctor honoris causa verliehen. Er arbeitete eng mit dem ersten Leiter der Biologischen Station zu Plön Prof. Dr. Otto Zacharias (1846-1916) zusammen und war der Lehrer des Nestors der Diatomeenkunde Dr. h. c. Friedrich Hustedt (1886-

1968). Die Bearbeitung der Algen von Lemmermann in der "Kryptogamenflora der Mark Brandenburg" ist ein sehr wichtiges Referenzwerk (s. Täuscher 2009a).

In der Hauszeitschrift des Friedrichshagener Fischerei-Instituts "Zeitschrift für Fischerei und deren Hilfswissenschaften" wurden in den "Beiträgen zur Fischereibiologie märkischer Seen" die Untersuchungen der benthischen Algen der Dissertation von Edmund Rehbronn (1909-1981) 1937 und die Phytoplankton-Untersuchungen der Dissertation von Ernst Erik Vorkastner (Lebensdaten unbekannt) 1938 veröffentlicht.

Chronologie der phykologischen Untersuchungen nach dem 2. Weltkrieg

Nach dem 2. Weltkrieg wurden die Untersuchungen der Algen im Großen Müggelsee durch verschiedene Institute und Einrichtungen fortgesetzt (Institut für Binnenfischerei der Deutsche Akademie der Landwirtschaften zu Berlin / Akademie der Landwirtschaften der DDR [1947-1991]: Detlev Barthelmes, Eva-Maria Bursche, Marlis Schlüter/Tscheu-Schlüter; Institut für Geographie und Geoökologie der Akademie der Wissenschaften der DDR, Bereich Hydrologie [1976-1991]: Frank Cramer, Sigrid Hoeg, Jan Köhler, Brigitte Nixdorf; Leibniz-Institut für Gewässerökologie und Binnenfischerei [seit 1992]: s. Tab. 2, Institut für Wasserwirtschaft [1952-1990]: Kurt Bauer, Peter Warnke; Oberflussmeisterei Berlin bzw. Wasserwirtschaftsdirektion Oder-Havel: Wolfgang Fischer, AG "Mikroalgenökologie" in Täuscher 2012; Humboldt-Universität zu Berlin, Lehrstuhl für Ökophysiologie/Ökologie [1976-2000]: s. Tabelle 2).

Veränderungen in der Arten-Zusammensetzung

1977 legte Täuscher einen Forschungsbericht über die Veränderungen der Algenbesiedlung im Großen Müggelsee vor, die zur Bioindikation genutzt werden können (Tabelle 1).

Tabelle 1: Veränderungen der Algenbesiedlung im Großen Müggelsee

Taxa	Lemmermann (1903)	Täuscher (1977)	
Cyanobacterie/Cyanophyta	19 Arten	27 Arten	
Bacillariophyceae	58 Arten	43 Arten	
- Euplankter	13 Arten	11 Arten	
Clorophyta sensu stricto			
Chlorophyceae,			
Trebouxiophyceae:			
"kokkale Grünalgen"	23 Arten	53 Arten	

Eine Zunahme der Oscillatoriales-Artenzahl, eine sehr starke Zunahme der Arten kokkaler Grünalgen und eine Abnahme der Chrysophyceae sensu lato-Artenzahl sind deutliche Hinweise einer stärkeren anorganischen Belastung (Erhöhung der Trophie) und einer stärkeren organischen Belastung (Erhöhung der Saprobie). Auch die Diatomeenflora von Sedimentproben zeigt eine Erhöhnung der Trophie an. Dabei sind in den älteren, tieferen Proben *Aulacoseira granulata* und *A. islandica* zu finden, während die jüngeren, oberen Sedimentproben durch *Aulacoseira granulata* charakterisiert werden (Täuscher 1979).

Ökophysiologische und ökologische Untersuchungen

In den Arbeitsgruppen von Johannes-Günter Kohl (1936-2000) (Humboldt-Universität zu Berlin), Peter Mauersberger (1928-2007). Norbert Walz und Rita Adrian (Bereich Hydrologie der AdW bzw. IGB) wurden umfangreiche ökophysiologische und ökologische Untersuchungen an planktischen und benthischen Algen einschließlich von Untersuchungen zu Cyanobakterien-/Blaualgen-Toxinen auch mit Algen-Stämmen aus dem Großen Müggelsee durchgeführt und in Graduierungsarbeiten (s. Tabelle 2), Veröffentlichungen (z. B. in Behrendt & Nixdorf 1993, Köhler et al. 2000, 2002, 2005) und in den Büchern "Ökophysiologie der Algen" (Kohl & Nicklisch 1988) und "Ökologie und Schutz von Seen" (Dokulil et al. 2001) zusammenfassend veröffentlicht.

Tabelle 2: Graduierungsarbeiten über Algenuntersuchungen im Großen Müggelsee

Autoren / Name	Graduierungsarbeit	Algenuntersuchungen		
Awe, P.	Diplomarbeit 1991	Phytoplankton-Ökologie		
Behnke; R. & U. Pötter	Diplomarbeit 1978	Phytoplankton-Ökologie		
Broschinski, L.	Diplomarbeit 1979	Cyanobakterien-Toxine		
Conrad, B.	Diplomarbeit 1977	Limnothrix redekei		
Dudel, G.	Dissertation B = HabilArbeit 1989	Cyanobakterien-Stickstofffixation		
Himmelbach, U.	Diplomarbeit 1986	Phytoplankton-Ökologie		
Hrachowy, C. & H. Loos	Diplomarbeit 1981	Phytoplankton-Ökophysiologie		
Kroker, J.	Diplomarbeit 2001	Mikrophytobenthos-Ökologie		
Maucksch, R.	Diplomarbeit 1978	Planktothrix agardhii		
Kühl, H.	Diplomarbeit 1980	Aphanizomenon flos-aquae		
Nicklisch, A.	Dissertation B = HabilArbeit 1982	Phytoplankton-Ökologie		
Nixdorf, B.	Dissertation 1983, HabilArbeit 1994	Phytoplankton-Ökophysiologie		
Roberts, E.	Diplomarbeit 2002	Mikrophytobenthos-Ökologie		
Rücker, J.	Dissertation 1992	Phytoplankton-Ökophysiologie		
Schlangstedt, M.	Dissertation 1984	Aphanizomenon flos-aquae, Anabaena solitaria		
Swigulski, C.	Diplomarbeit 1982	Phytoplankton-Ökologie		
Täuscher, L.	Dissertation 1980	Phytoplankton-Ökologie		
Teubner, K.	Dissertation 1996	Phytoplankton-Ökologie		
Tippmann, P.	Diplomarbeit 1990, Dissertation 1993	Phytoplankton-Ökologie		

So gibt es z.B. von *Limnothrix redekei* aus dem Großen Müggelsee Stämme mit verschiedenen Pigment-Mustern (Stamm KÜRZINGER 1976/HUB 010: rote Färbung; Stamm KÜRZINGER 1979/HUB 022: gelbe Färbung; Stamm KÜRZINGER 1979/HUB 025: blaugrüne Färbung) (s. Kohl & Nicklisch 1981, Komarek 2006).

Gesamtartenliste der Algen des Großen Müggelsees

Bisher liegen Teil-Artenlisten planktischer und benthischer Mikro- und Makroalgen des Großen Müggelsees von Lemmermann (1903), Rehbronn (1937), Vorkastner (1938), Behnke & Pötter 1978: s. Tabelle 2), L. Täuscher (1978, 1980), Nixdorf & Hoeg in Behrendt & Nixdorf (1993), Teubner (1996: s. Tabelle 2) und H. Täuscher (ab 1998, unveröff.) vor, die in der "Liste der in Berlin nachgewiesenen Algen" von Geissler in Geissler & Kies (2003) berücksichtigt wurden. Eine große Rolle im Plankton spielen die Cyanobacteria/Cyanophyta, Bacillariophyceae und Chlorophyta sensu stricto mit den Klassen Chlorophyceae und Trebouxiophyceae. Als Begleiter treten Heterokontophyta (Chrysophyceae sensu stricto, Synurophyceae, Xanthophyceae, Eustigmatophyceae), Cryptophyta, Dinophyta, Euglenophyta und Charophyta (Zygnemophyceae) auf. Benthische und zum Teil pleustische Taxa sind Cyanobacteria/Cyanophyta, Bacillariophyceae, Cladophora-, Draparnaldia-, Mougeotia-, Oedogonium-, Spirogyra-, Stigeoclonium-, Ulothrix-, Ulva- (= Enteromorpha-) und Zygnema-Taxa, die Chlorophyceae-, Ulvophyceae- und Zygnemophyceae-"Watten" bilden. Chara-Oosporen (Chara globularis, Chara vulgaris) wurden in Sedimentproben gefunden. Das Phytoplankton (incl. tychoplanktischer Taxa) bildet bei Massenentwicklung "Wasserblüten", "Blaualgen-Seebälle" und "Vegetationsfärbungen". Das Phytobenthos ist als Mikrophytobenthos (incl. metaphytischer Taxa) als "Krötenhäute", "Aufwuchs", "Bewuchs" oder "Periphyton" zu finden, während das Makrophytobenthos (incl. pleustischer Taxa) "Watten" und "Fadenalgenwalzen" charakterisiert. "Grundrasen" autochthoner Armleuchteralgen (Charales) spielten in den letzten 120 Jahren im Großen Müggelsee keine Rolle. Eine Gesamtartenliste der Algen muss für diesen Fluss-Flachsee noch erstellt werden.

Diskussion und Ausblick

Die 120jährigen Langzeit-Untersuchungen der Besiedlung mit Algen im Großen Müggelsee in Berlin reihen sich in weitere Erfassungen ein, die in norddeutschen Gewässern dokumentiert wurden (s. Tabelle 3).

Tabelle 3: Langzeit-Untersuchungen der Algenbesiedlung in norddeutschen Gewässern

Gewässer	Bundesland	Untersuchungszeitraum	Phykologen/Botaniker	Literatur
Großer Lychensee	Brandenburg	> 100 Jahre	Marsson in Passarge	Täuscher (2009a)
Niederpfuhl				
Oberpfuhl				
Wurlsee				
Zenssee				
Stechlinsee	Brandenburg	> 50 Jahre	Busse, Krausch, Küchler	Täuscher (2009a, b)
Greifswalder Bodden	Mecklenburg-	> 100 Jahre	Lemmermann	Täuscher (2013a, b)
Saaler Bodden	Vorpommern			
Rügensche Bodden	Mecklenburg-	> 100 Jahre	Apstein	Täuscher (2013a, b)
	Vorpommern			
Schweriner Gewässer	Mecklenburg-	> 100 Jahre	Zacharias	Zacharias (1898)
	Vorpommern			
Unter-Warnow	Mecklenburg-	> 100 Jahre	Oltmanns, Porter	Täuscher (2013a, b)
	Vorpommern			
Arendsee	Sachsen-Anhalt	> 100 Jahre	Zacharias	Zacharias (1899a, b)
Kamernscher-Schönfelder	Sachsen-Anhalt	> 50 Jahre	Horst	Täuscher (2011)
See				
Großer Plöner See	Schleswig-Holstein	> 100 Jahre	Lemmermann	Hickel (1975)
Plußsee	_			

Danksagung

Herr Dr. Wolfgang Fischer (Potsdam) stellte mir sein unveröffentlichtes Manuskript "Studien zur Entwicklung von Planktonalgen im Müggelsee" zur Verfügung. Herr Dr. Jürgen Mathes (Schwerin) gab mir einen wichtigen Literaturhinweis zu Planktonuntersuchungen in Schweriner Gewässern durch Prof. Dr. Otto Zacharias (1898).

Literatur

Behrendt, H. & B. Nixdorf (eds.) (1993) Special issue: Lake Müggelsee – Limnology of a Eutrophic, Shallow, Polymictic Lake. – Int. Revue ges. Hydrobiol. 78: 325-458.

Berliner Wasser-Betriebe (ed.), G. Kley, P. Braun, D. Langer, U. Müller & G. Rudolf (1993): Wasserwerk Friedrichshagen. Industriedenkmal und Versorgungsbetrieb 1893-1993. – Berlin, München.

Dokulil, M., A. Hamm & J.-G. Kohl (2001): Ökologie und Schutz von Seen. – Wien.

Geissler, U. & L. Kies (2003): Artendiversität und Veränderungen in der Algenflora zweier städtischer Ballungsgebiete Deutschlands: Berlin und Hamburg. – Nova Hedwigia, Beiheft 126: 1-777.

Hennings, P. (1893): Die Algenflora des Müggelsees. – Naturwissenschaftliche Wochenschrift 8: 81-83.

Hickel, B. (1975): Changes in phytoplankton species composition since 1894 in two lakes of East Holstein, Germany. - Verh. Intern. Verein. Limnol.. 19: 1229-1240.

Jahn, D., H. Witt & H. Wassmann (2005): Gewässeratlas von Berlin – Von der Gewässervermessung zum Gewässeratlas von Berlin mit hydrographischem Informationssystem, Teil 4: Bereich Dahme-Spree. – Senatsverwaltung für Stadtentwicklung (ed.): 41-63.

http://www.stadtentwicklung.berlin.de/umwelt/wasser/wasserrecht/pdf/wasseratlas.pdf

Jahn, R. (2002): Otto Müller's names of diatoms (Bacillariophyceae) and extant original material at the Botanical Museum Berlin-Dahlem (B). – Willdenowia 32: 155-173.

Kohl, J.-G. & A. Nicklisch (1981): Chromatic adaptation of the planktic blue-green alga Oscillatoria redekei Van Goor and its ecological significanc. - Int. Revue ges. Hydrobiol. 66: 83-94.

Kohl, J.-G. & A. Nicklisch (1988): Ökophysiologie der Algen. Wachstum und Ressourcennutzung. – Berlin. Köhler, J., J. Gelbrecht & M. Pusch (eds.) (2002): Die Spree. – Limnologie aktuell, Bd. 10, Stuttgart.

Köhler, J., S. Hilt, R. Adrian, H.-P. Kozerski, A. Nicklisch & N. Walz (2005): Long-term response of a

shallow, moderately flushed lake to reduced external phosphorus and nitrogen loading. – Freshwater Biology 50: 1639-1650.

Köhler, J., S. Hoeg & H. Behrendt (2000): Die Entwicklung planktischer Blaualgen unter dem Einfluß verringerter Nährstoffbelastung im Müggelsee. – Deutsche Gesellschaft für Limnologie (DGL)-Tagungsbericht 1999 (Rostock), Bd. I: 326-328.

Komarek, J. (2006): Cyanobacterial Taxonomy: Current Problems and Prospects fort he Integration of Traditional and Molecular Approaches. – Algae 21: 349-375.

- Lemmermann, E. (1896): Die Planktonalgen des Müggelsees bei Berlin II. Beitrag. Zeitschrift für Fischerei und deren Hilfswissenschaften 4: 148-160.
- Lemmermann, E. (1903): Brandenburgische Algen. II. Das Phytoplankton des Müggelsees und einiger benachbarter Gewässer. Zeitschrift für Fischerei und deren Hilfswissenschaften 11: 73-123.
- Müller, O. (1895): Die Bacillariaceen im Plankton des Müggelsees bei Berlin. Zeitschrift für Fischerei und deren Hilfswissenschaften 3: 266.-270.
- Rehbronn, E. (1937): Beiträge zur Fischereibiologie märkischer Seen. II. Das natürliche Nahrungsangebot, insbesondere der Aufwuchs, und die Ernährung der Fischnährtiere im Litoral eines eutrophen Sees. Zeitschrift für Fischerei und deren Hilfswissenschaften 35: 233-345.
- Schellenberger, G. (1981): Hydrologie und Ökologie des Müggelsees. Geographische Berichte 99: 115-122.
- Steffens, W. & W. Schäperclaus (1993): Ein Jahrhundert fischereiwissenschaftliche und hydrobiologische Forschung in Berlin-Friedrichshagen. Fortschritte der Fischereiwissenschaft 11: 9-22.
- Täuscher, L. (1977): Die Veränderungen der Artenzusammensetzung des Phytoplanktons im Großen Müggelsee seit 1895. Forschungsbericht Humboldt-Universität zu Berlin, Sektion Biologie, Bereich Ökophysiologie.
- Täuscher, L. (1978): Atlas des Phytoplanktons des Großen Müggelsees. Forschungsbericht Humboldt-Universität zu Berlin. Sektion Biologie, Bereich Ökophysiologie. 34 S.
- Täuscher, L. (1979): Untersuchungen der Diatomeenflora von Sedimentproben aus dem Großen Müggelsee.

 Forschungsbericht Humboldt-Universität zu Berlin. Sektion Biologie, Bereich Ökophysiologie & Karteikartensammlung.
- Täuscher, L. (1980): Untersuchungen zur Art- und Biozönosestruktur des Phytoplanktons des Großen Müggelsees (Berlin) unter Berücksichtigung produktions- und saprobiologischer Aspekte. Diss. Humboldt-Universität zu Berlin, 141 S. + Anhang.
- Täuscher, L. (2009a): Historische und aktuelle Untersuchungen der Algen-Besiedlung im Land Brandenburg (Deutschland) ein bibliographischer Überblick als Grundlage für Checklisten und Rote Listen der Algen (incl. Anhang: Bibliographie der Historischen und aktuellen Untersuchungen der Algen-Besiedlung im Land Brandenburg [Deutschland]). Rostock. Meeresbiolog. Beitr. 22: 87-123.
- http://www.biologie.uni-rostock.de/oekologie/RMB.htm#22
- Täuscher, L. (2009b): 50 Jahre limnologische Forschung am Stechlinsee. Naturschutz und Landschaftspflege in Brandenburg 18: 54-55.
- Täuscher, L. (2011): 50 Jahre Langzeit-Untersuchungen der Besiedlung mit Algen und Wasserpflanzen in dem Altwasser-Flachsee Kamernscher-Schönfelder See im Elbe-Havel-Winkel (Sachsen-Anhalt). Untere Havel Naturkundliche Berichte (Stendal) 21: 2-7.
- Täuscher, L. (2012): Umweltbildung für Schüler, Studenten und in der Erwachsenenqualifizierung vor und nach der "Wende" (1979-2012). Studienarchiv Umweltgeschichte 17: 67-76.
- $http://www.iugr.hs-nb.de/fileadmin/IUGR/Publikationen/Studienarchiv_Umweltgeschichte/Stug17_A5_green.pdf$
- Täuscher, L. (2013a): Untersuchungen der Algenbesiedlung von Küstengewässern in Mecklenburg-Vorpommern vor dem 2. Weltkrieg (1892-1940). – Arch. Freunde Naturg. Mecklenb. **52**: im Druck.
- Täuscher, L. (2013b): 120 Jahre "Phykologische Streiflichter" in nordostdeutschen Küstengewässern. Vortrag auf der 10. Tagung "Characeen Deutschlands" (Biologische Station Hiddensee der E.-M.-A.-Univ.,7.-9. Juni 2013).
- Vorkastner, E.E. (1938): Beiträge zur Fischereibiologie märkischer Seen. III. Der Netzplanktonhaushalt des Müggelsees auf Grund mehrjähriger Terminuntersuchungen. Zeitschrift für Fischerei und deren Hilfswissenschaften 36: 737-814.
- Zacharias, O. (1898): Ein Blick in das Plankton der Schweriner Gewässer. Fischereizeitung 1: 689-692.
- Zacharias, O. (1899a): Das Plankton des Arendsees. Biologisches Centralblatt 19: 95-102.
- Zacharias, O. (1899b): Das Plankton des Arendsees. Forsch.ber. biolog. Station zu Plön 7: 50-58.

SONSTIGE THEMEN

DOST, P. & TH. WOLF: Repräsentativität und Inhomogenitäten zweidimensionaler Windfelder und deren Einfluss auf Simulationsergebnisse im Strömungsmodell DELFT FLOW 3D

FEHSE C., C. HERRMANN, E. SÖNMEZ, G. TAN & A. HAMM: Trophische Ebenen in Mittelgebirgsbächen unter dem Einfluss von Fischteichen

HORN, A.: Entwicklung eines dreidimensionalen, gekoppelten Modells zur Untersuchung der Wasserqualität des Bodensees

KUSBER, W.-H., S. VON MERING & J. HOLETSCHEK: Netzverfügbarkeit primärer Biodiversitätsdaten: Schritt für Schritt zur BioCASe-Anbindung limnologischer Datenquellen an das GBIF-Netzwerk

MÜLLER, D., TH. WARNEKE, T. RIXEN, M. MÜLLER, & J. NOTHOLT: Measuring dissolved greenhouse gases in peat-draining rivers with FTIR spectroscopy

SCHWEDER, H., G. HEMMER, CH. HUBER & R. WILMS: Umsiedlung einer Kreuzkröten-Population (Bufo calamita) mit Anlage eines Laichhabitates im westlichen Ruhrgebiet

Deutsche Gesellschaft für Limnologie (DGL) Erweiterte Zusammenfassungen der Jahrestagung 2013 (Potsdam-Berlin), Hardegsen 2014

Repräsentativität und Inhomogenitäten zweidimensionaler Windfelder und deren Einfluss auf Simulationsergebnisse im Strömungsmodell DELFT FLOW 3D

Dost, Philipp & Wolf, Thomas

Institut für Seenforschung, Argenweg 50/1, 88085 Langenargen, philipp.dost@onlinemed.de, thomas.wolf@lubw.bwl.de

Keywords: Modellierung, Delft, Strömungsmodell, Windfeld, Windantrieb

Einleitung

Der Bodensee gehört zu den größten Binnengewässern Mitteleuropas und spielt als aquatisches Ökosystem eine zentrale Rolle. Um eine langfristige Trinkwasserqualität zu garantieren und im Fall eines Schadstoffeintrages mögliche Transportwege zu prognostizieren, ist ein fundiertes Wissen der seeinternen Dynamik unumgänglich. Strömungsprozesse werden dabei maßgeblich durch den Wind beeinflusst. Im Krisenfall sollte es jederzeit möglich sein, eine Schadstoffausbreitung zu prognostizieren und eine verlässliche Aussage über die horizontale und vertikale Verbreitung treffen zu können.

Ziel der Arbeit war es, die lokalen Windfelder KN (Deutscher Wetterdienst Konstanz), LIN (linear interpoliertes Windfeld von BodenseeOnline), MCF (Mass Consistent Flow vom Institut für Kerngenetik und Energiesysteme IKE) und COSMO (Consortium for Small-scale Modeling, Deutscher Wetterdienst) hinsichtlich ihrer Repräsentativität zu überprüfen.

Mit Hilfe des dreidimensionalen hydrodynamischen Modells Delft3D FLOW wurde untersucht, wie intensiv sich die einzelnen Windfelder auf verschiedene Strömungsregime auswirken und mit den tatsächlich im See ablaufenden Strömungsprozessen übereinstimmen. Parallel dazu erfolgte eine Qualitätskontrolle der Windfelder hinsichtlich eingehender Stationen und ein umfassender Vergleich mit Messdaten.

Material und Methoden

Hydrodynamisches Modell

Anhand ausführlicher Sensitivitätsbetrachtungen konnte innerhalb Delft3D FLOW eine entsprechende Modellanpassung vorgenommen werden, um die seeinterne Strömungsdynamik realitätsnah abzubilden. Als Gütekriterium wurde dabei die simulierte vertikale Wassertemperatur in Seemitte (Tiefe: 254 m) verwendet und mit Messdaten verglichen. Resultat war ein angepasstes Modell mit einer horizontalen Auflösung von 500 x 500 m bei 43 vertikalen, nicht äquidistanten Schichten (Ebenen konstanter Tiefe, Z-Layer-Einteilung). Die zeitliche Auflösung lag entsprechend Courant-Friedrichs-Lewy-Bedingung bei 1 min.

Neben den lokalen Windfeldern wurden die drei größten Zuflüsse des Bodensees: Alpenrhein (230 m³s⁻¹), Bregenzerach (46,8 m³s⁻¹) und Argen (19,2 m³s⁻¹ mittlerer Jahresabfluss), sowie

Lufttemperatur (°C), relative Feuchte (%) und Wolkenbedeckung (%) der Messstation Konstanz als Antrieb verwendet.

Lokale Windfelder

Der Wind stellt die Hauptantriebskraft für hydrodynamische Prozesse im Bodensee dar. Da der Wind nur an Landstationen kontinuierlich gemessen wird, gibt es verschiedene Varianten, einen Windantrieb für Delft3D FLOW zu generieren. Jedes Windfeld besteht dabei aus den Komponenten: Windgeschwindigkeit (ms⁻¹), Windrichtung (°) und Luftdruck (mbar).

Eine einfache Möglichkeit besteht darin, Daten einer repräsentativen Messstation auf den gesamten Bodensee zu übertragen. Es entsteht ein homogenes Windfeld. Für den Bodenseeraum bieten sich aufgrund der idealen Lage zwischen Ober- und Untersee Daten der Messstation Konstanz an (KN-Windfeld). Zu einem beliebigen Zeitpunkt wird an jedem Seepunkt die gleiche Geschwindigkeit und Windrichtung angenommen. Verwendet werden Mittelwerte in stündlicher Auflösung.

Das räumlich linear interpolierte Windfeld (LIN-Windfeld) wird von BodenseeOnline bereitgestellt. Anhand von verschiedenen Messstationen an Land wird mittels linearer Interpolation (Inverse Distance Weighting) das Windfeld für die Wasserfläche erstellt. Räumliche Auflösung: 400 x 400 m, zeitliche Auflösung: 1 h.

Das MCF-Windfeld (Mass Consistent Flow) wird vom Institut für Kerngenetik und Energiesysteme (IKE) im Rahmen des Projekts BodenseeOnline für den Bodensee bereitgestellt. Als Grundlage dienen wie bereits beim LIN-Windfeld Stationsdaten rund um den See. Die Windfeldberechnung erfolgt durch ein massenkonsistentes, divergenzfreies diagnostisches Strömungsmodell (MCF). Die Rauhigkeitsvorgaben werden dabei durch ein Orografiemodell realisiert. Räumliche Auflösung: 400 x 400 m, zeitliche Auflösung: 1 h.

Eine weitere Möglichkeit stellt das COSMO-Windfeld dar. Dieses Windfeld resultiert aus dem Lokal-Modell Kürzestfrist COSMO-DE, der Dateninput wird direkt durch das Atmosphärenmodell realisiert. Räumliche Auflösung: 2785 x 2780 m, zeitliche Auflösung: 1 h.

Untersuchungspunkte

Für die Datenauswertung dienten neben horizontalen Betrachtungen des Obersees die Messpunkte der Internationalen Gewässerschutzkommission für den Bodensee (Überlinger See, Fischbach-Uttwil, Langenargen-Arbon und Bregenzer Bucht). Die Strömungsmodellierung und Anwendung der unterschiedlich begründeten Windfelder erfolgte für die Jahre 2008 bis 2010.

Weiterhin wurde ein Vergleich mit ADCP-Messwerten für einen fünftägigen Zeitraum von Ende Juli bis Anfang August 2009 durchgeführt.

Ergebnisse und Diskussion

Inhomogenitäten der Windfelder

Die Repräsentativität der Windfelder LIN und MCF war zwischen 2008 und 2010 maßgeblich von den eingehenden Stationen abhängig. Durch das Ausbleiben der geographisch entscheidend positionierten Stationen Friedrichshafen, Lindau und der Wetterstation Arbon im Jahr 2010 kam es zu starken "Einbrüchen" der Windgeschwindigkeit in Seemitte (Abbildung 1). Dieses "Einbrechen" wurde in den mittleren jährlichen Strömungsgeschwindigkeiten in Form negativer Abweichungen wiedergegeben (Abbildung 2). Besonders stark vom beschriebenen Effekt war das lineare Windfeld betroffen.

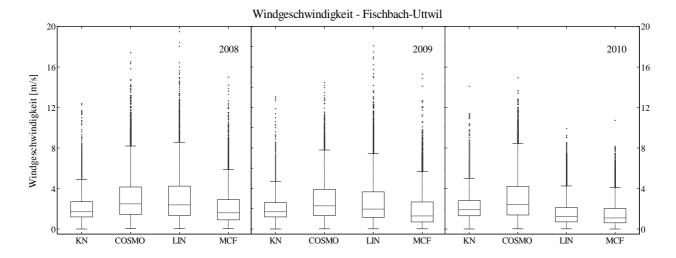


Abb. 1: Boxplots der Windgeschwindigkeit (ms⁻¹) für die Windfelder KN, COSMO, LIN und MCF, Station Fischbach-Uttwil. Im Jahr 2010 zeigte das LIN-Windfeld im Vergleich zu den Vorjahren deutliche negative Abweichungen.

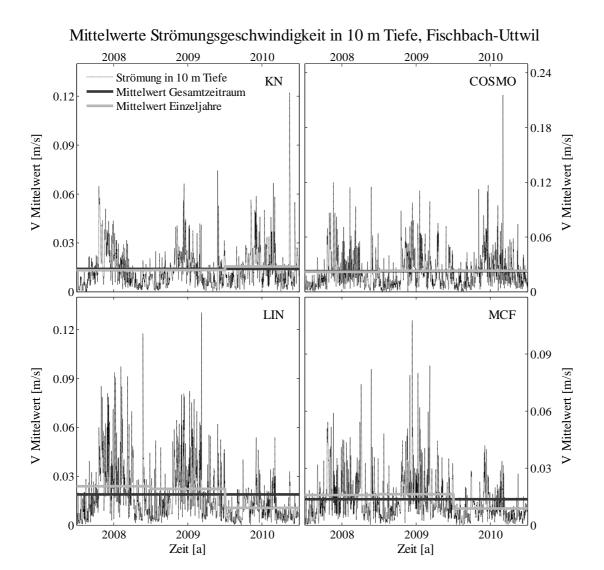


Abb. 2: Vergleich der Strömungsgeschwindigkeit (ms⁻¹) in 10 m Tiefe, Station Fischbach-Uttwil. Die in

Abbildung 1 aufgezeigten Einbrüche in der Windgeschwindigkeit führten zu einem deutlichen Rückgang der mittleren jährlichen Strömungsgeschwindigkeit, besonders im LIN-Windfeld.

Das massenkonsistente MCF-Windfeld zeigte im Vergleich mit den Messstationen des Obersees und der Bregenzer Bucht die genauesten Ergebnisse mit der höchsten Übereinstimmung. Allerdings erfolgte die Überprüfung anhand von Stationen, welche selbst zur Windfelderstellung verwendet wurden. Eine unabhängige Station konnte für den Beobachtungszeitraum nicht gefunden werden. Im Bereich des Überlinger Sees und der Station Stockach-Espasingen unterschätzte das MCF-Windfeld stark.

Neben den jährlichen Schwankungen im Stationsinput fielen auch stündliche Inhomogenitäten auf. So wurden in den Windfeldern LIN und MCF Situationen detektiert, in denen stündliche Fehlwerte oder unregelmäßig einfließende Stationsdaten das Windfeld sehr stark beeinflusst haben.

Das COSMO-Windfeld bewies ein sehr stabiles Eigenverhalten. Es zeigten sich weder jährliche, noch stündliche Inhomogenitäten. Trotz einer Gitterweite von nur 2800 m ist die Auflösung letztendlich höher als bei den mit 400 m aufgelösten BodenseeOnline-Windfeldern. Im Gegensatz zu LIN und MCF steht hinter jeder Zelle eine definierte, "lenkende" Information aus dem Atmosphärenmodell. Das COSMO-Windfeld zeigte jedoch kleinere Schwächen in den untergeordneten Windrichtungskomponenten.

Das als Einzelstation verwendete Konstanzer Windfeld konnte mit zunehmender Entfernung von Konstanz erwartungsgemäß als nicht repräsentativ angesehen werden. Besonders die Windrichtung wurde in entfernteren Gebieten (z.B. Bregenzer Bucht) nicht korrekt wiedergegeben. Für wichtige Strömungsuntersuchungen sollte daher nicht auf das KN-Windfeld zurückgegriffen werden.

Vergleich mit ADCP

Der Vergleich zwischen simulierten Strömungsgeschwindigkeiten und ADCP-Messungen verdeutlichte, dass die Windfelder COSMO und LIN im betrachteten Zeitraum 2009 näher an den tatsächlichen Strömungswerten lagen als die Ergebnisse aus MCF und KN-Windfeld.

In 5 m Tiefe wurden mittels COSMO und LIN gute Übereinstimmungen festgestellt, wobei gerade das COSMO-Windfeld das Umschlagen zwischen nördlichen und südlichen Richtungen sehr gut abgebildet hat. In 15 m Tiefe fielen die simulierten Ergebnisse ab und präsentierten nur am Beispiel des LIN ausreichend gute Strömungswerte. Die Periodizität wurde durch die Windfelder COSMO, LIN und MCF gut wiedergegeben, die Amplituden unterschieden sich teilweise stark. Das Konstanzer Windfeld zeigte im Vergleich die größten negativen Abweichungen.

Zusammenfassung

Das COSMO-Windfeld zeigte für den betrachteten Zeitraum 2008 bis 2010 die stabilsten und damit repräsentativsten Ergebnisse. Die Windfelder LIN und MCF bildeten besonders in Seemitte Schwächen ab. Gerade das durch Inverse Distance Weighting entstandene LIN-Windfeld verzeichnete im Jahr 2010 durch das Wegfallen der geographisch entscheidend positionierten Station Friedrichshafen und der Wetterstation Arbon einen signifikanten "Einbruch" der Windgeschwindigkeit in Seemitte. Dies spiegelte sich in einem sofortigen Rückgang der mittleren jährlichen Strömungsgeschwindigkeit wider. Das KN-Windfeld sollte für Strömungsbetrachtungen mit zunehmender Entfernung von Konstanz nicht verwendet werden, da die Windrichtung in Konstanz nicht auf den gesamten See übertragbar ist.

Aufgrund der hohen Variabilität der Strömung wäre ausgehend vom repräsentativen COSMO-Windfeld eine Erhöhung des meteorologischen Gitters auf eine feinere Auflösung ratsam, um mit simulierten Ergebnissen noch näher an den realen Strömungsverläufen liegen zu können. Dies bedeutet gerade in Hinblick auf zukünftige Arbeiten mittels Windfeldern eine hohe Anforderung.

Danksagung

Diese Untersuchung entstand im Rahmen einer Diplomarbeit am Institut für Seenforschung, Langenargen. Ein großer Dank geht an Dr. Thomas Wolf und Bernd Wahl vom ISF, sowie Stefan Mirbach von der Ingenieurgesellschaft Prof. Kobus und Partner GmbH.

Literatur

- Baldauf, M., Förstner, J., Klink, S., Reinhardt, T., Schraff, C., Seifert, A., Stephan, K. (2010): Kurze Beschreibung des Kürzestfrist COSMO-DE (LMK) und seiner Datenbanken auf dem Datenserver des DWD, Deutscher Wetterdienst, Geschäftsbereich Forschung und Entwicklung, Offenbach, 80 S.
- Deltares (2011): Delft3D-FLOW, Simulation of multi-dimensional hydrodynamic FLOWs and transport phenomena, including sediments, User manual, Hydro-Morphodynamics, Version 3.15, 688 S.
- Lampert, W., Sommer, U. (1999): Limnoökologie, 2. neu bearbeitete Auflage, Georg Thieme Verlag Stuttgart, 489 S.
- Mirbach, S., Lang, U. (2010): BodenseeOnline: Untersuchung der linear interpolierten Windverteilung auf dem Bodensee, Ingenieurgesellschaft Prof. Kobus und Partner GmbH, 34 S.
- Mirbach, S., Lang, U. (2010): BodenseeOnline: Untersuchung des MCF-Windfeldes auf dem Bodensee, Ingenieurgesellschaft Prof. Kobus und Partner GmbH, 42 S.
- Peeters, F., Wolf, T. (2011): Messung großskaliger Transportpfade im Bodensee als Basis für ein Modellsystem zur Schadstoffausbreitung: Drifterexperimente und Modellvergleich, Limnologisches Institut Universität Konstanz, Institut für Seenforschung LUBW, 75 S.

Trophische Ebenen in Mittelgebirgsbächen unter dem Einfluss von Fischteichen

Catherine Fehse¹, Carina Herrmann, Ezgi Sönmez², Gözde Tan² & Andreé Hamm³

1 Institut für Nutzpflanzenwissenschaften und Ressourcenschutz, Melbweg 42, D-53127 Bonn, cgfehse@uni-bonn.de, 2Ankara Üniversitesi, Institute of Science, Department of Biology, Dögol Caddesi, 06100 Tandoğan Ankara, Turkey3 Institut für Nutzpflanzenwissenschaften und Ressourcenschutz, Melbweg 42, D-53127 Bonn, a.hamm@uni-bonn.de

Keywords: trophic levels, fishponds, feeding types, eukaryotic microorganisms

Einleitung

Natürliche Gewässer werden durch anthropogene Einleitungen aus Fischteichen nicht immer negativ beeinflusst (Foschepoth, 2008). Die vorliegende Vergleichsstudie untersucht die Auswirkungen von zwei Fischteicheinleitungen auf Kenndaten von Zönosen des Makrozoobenthos (Makrozönose) und von Zönosen der Aufwuchsorganismen im Gewässer (Mikrozönosen) ausgehend von der Tatsache, dass diese beiden Gruppen zu einem Nahrungsnetz gehören (Schmid-Araya, 2000)

Introduction

Discharges of fishponds are not necessarily harmful on natural waters (Foschepoth, 2008). The present study investigates the impacts of two fishponds on ecological characteristics of the community of macroinvertebrates and simultaneously of size and structure of the microorganism population regarding to the fact that both groups belong to the same foodweb.

Material und Methoden

Die untersuchten Bäche (Bach 1 aus dem Einzugsgebiet der Wupper und Bach 2 aus dem Einzugsgebiet der Sieg) wurden an je einer Probestelle oberhalb und unterhalb von den Fischteichen FT 1 und FT 2 (s. Abbildung 2) mit der Methode des Multihabitat-Sampling (MHS) beprobt, das Makro-

zoobenthos (MZB) gemäß der operationellen Taxaliste bestimmt und die Metrics für das Makrozoobenthos mit Hilfe des Perlodes-Programms berechnet.

Für die Erfassung der Mikrozönose, insbesondere der Aufwuchsorganismen, wurden Objektträger an Steinen befestigt und 3 Wochen lang ebenfalls oberhalb und unterhalb der Fischteiche zeitnah zu der MHS-Beprobung im Bach exponiert (s. Abbildung 1) und nach ihrer Entnahme unter dem Mikroskop ausgezählt

Ergebnisse

Tab. 1: Kenndaten MZB Bach 1 und 2

Bach 1 MZB	oberhalb	unterhalb	Bach 2 MZB	oberhalb	unterhalb
Individuen	3147	7449	Individuen	97	439
Taxazahl	41	47	Taxazahl	18	34
Saprobienindex	2,09	2,12	Saprobienindex	1,9	1,9
Biodiversität nach	1.5	1.0	Biodiversität nach	2.6	2.8
Shannon Weaver	1,5	1,8	Shannon Weaver	2,6	2,0
Eveness	0,4	0,5	Eveness	0,9	8,0

Tabelle 1 zeigt Kenndaten der Makrozoobenthosaufsammlung (MZB) an Bach 1 und 2.

An beiden Bächen steigt die Individuen- und die Taxazahl unterhalb der Fischteiche. Der Saprobienindex, die Biodiversität sowie die Eveness bleiben annähernd gleich (s. Tabelle 1).

Abbildung 2 zeigt die Verteilung der Ernährungstypen an den Probestellen. Der Anteil der Sedimentfresser an Bach 1 hat unterhalb des FT1 prozentual abgenommen Der Anstieg der passiven Filtrierer unterhalb des FT1 ist dem Auftreten der Gattung *Hydropsyche* (netzbauende *Trichoptera*) (n=600) zu verdanken. Insbesondere traten *Hydropsyche siltalai* und *Hydropsyche angustipennis* auf. Dominante Gruppen sind sowohl unterhalb als auch oberhalb Chironomiden, Oligochaeten und Gammariden.

An Bach 2 zeigen vorwiegend Sedimentfresser unterhalb des FT 2 einen deutlichen Zuwachs (s. Abbildung.2). Dies ist dem vermehrten Auftreten von *Leptophlebiiden* (*n*=143) zuzuschreiben. Die Ordnung Ephemeroptera ist an beiden Stellen dominant, ist aber unterhalb von FT 2 noch 20 % höher.

Die chemische Analyse beider Gewässer ergab keine Auffälligkeiten. Die ökologische Zustandsklasse für Bach 1 wird nach "Perlodes" oberhalb des Fischteiches mit "gut" unterhalb nur mit "mäßig" bewertet. Bach 2 bekommt an beiden Stelle ein "gut".

Tab. 1 Kenndaten der Mikrozönose in Bach 1 und Bach 2

Bach 1 Mikrozönose	oberhalb	unterhalb
Gezählte Organismen	395	4341
Anzahl der Großgruppen	7	9
Bach 2 Mikrozönose	oberhalb	unterhalb
Bach 2 Mikrozönose Gezählte Organismen	oberhalb 7409	unterhalb 2867

Tabelle 2 zeigt Kenndaten für die Mikrozönose.

Erwartungsgemäß ist in Bach 1 parallel zum Anstieg der Individuenzahl des MZB unterhalb des Fischteiches FT1 auch die Anzahl der gezählten Mikroorganismen unterhalb des Fischteichs FT1 deutlich höher. Insbesondere der prozentuale Anstieg der Ciliaten - vornehmlich die Aufwuchsorganismen Peritricha - ist auffallend.

Überraschenderweise trifft dies für Bach 2 nicht zu. Lediglich die Anzahl der systematischen Großgruppen ist mehr als verdoppelt, vor allem konnten vermehrt *Gastroricha* (Bauchhärlinge), *Rotatorien* (Rädertierchen) sowie *Mikroturbellarien* und auch *Hydra sp.* verzeichnet werden.

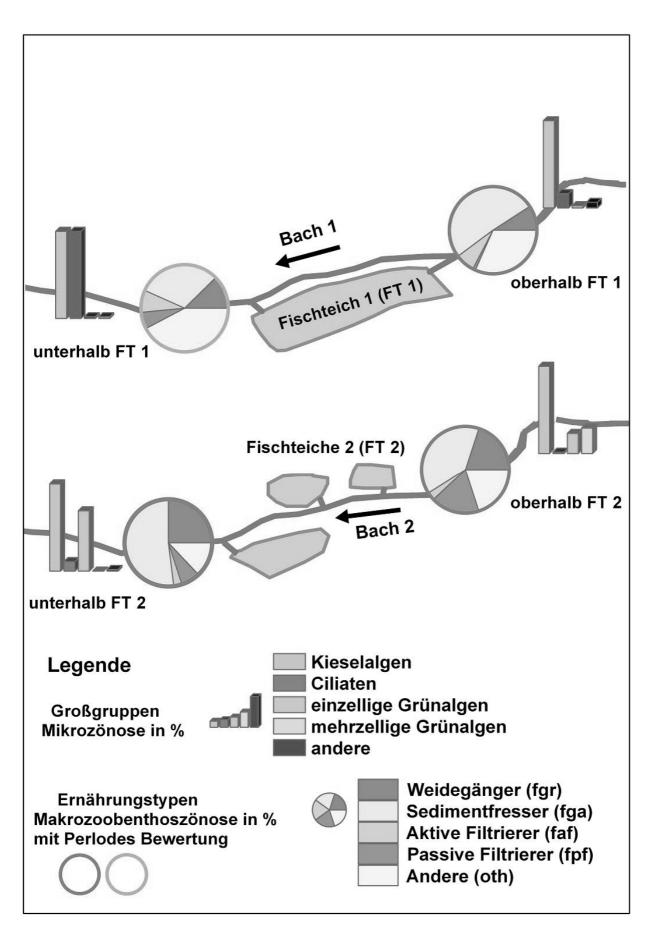


Abb.2: Mikro- und Makrozönosen oberhalb und unterhalb von Fischteichen

Diskussion

Die vergleichende Untersuchung zeigt, dass beide der untersuchten Bäche unterhalb der Fischteicheinleitungen nähstoffreicher sind, als oberhalb. Die erhöhte Individuenzahl/m² sowie die erhöhte Taxazahl des MZB lassen den Schluss zu. Dennoch scheinen die Mechanismen zur Aufrechterhaltung der Gewässerreinigungskraft unterschiedlich zu sein.

In Bach 1 erfolgt die Verschiebung der Dominanzen der funktionellen Gruppen der MZB unterhalb von FT 1 vor allem zugunsten der passiven Filtrierer. Die Taxazahl ist gegenüber der Individuenzahl nur unwesentlich erhöht, die ökologische Zustandsklasse liegt eine Stufe niedriger als oberhalb.

Das massive Auftreten von Aufwuchsorganismen unterhalb von Bach 1 ließe eigentlich ein deutlich vermehrtes Vorkommen von Weidegängern beim MZB vermuten. Dass dies nicht der Fall ist, legt eine eher indirekte Beziehung im Nahrungsnetz nahe.

In Bach 2 sind es die Sedimentfresser, deren oberhalb von FT 2 schon vorhandene Dominanz unterhalb deutlich erhöht wird. Die Einstufung der ökologischen Zustandsklasse ändert sich nicht.

Unerwartet ist die geringere Anzahl an gezählten Individuen der Mikrozönose unterhalb von Bach 2. Insbesondere der Prozentsatz der Ciliaten war nur unwesentlich erhöht. Möglicherweise unterliegen hier die einzelligen Organismen einem vermehrten Nahrungsdruck durch die mehrzelligen Kleinstlebewesen wie Rotatorien und Gastrotricha.

Eine endgültige Interpretation der Ergebnisse ist aufgrund dieser einen Untersuchung nicht möglich. Es sind weitere Arbeiten zu diesem Thema in Vorbereitung, in die die Nutzungsart der Fischteiche, das Teichvolumen, das Abflussregime u.a. mit in die Untersuchung einfließen.

Zusammenfassung

Die vorliegende Arbeit zeigt sowohl ein Beispiel, das die bisherigen Forschungsergebnisse über die negativen Auswirkungen von Fischteichen auf das Makrozoobenthos bestätigt, als auch ein Beispiel dafür, dass Fischteiche die benthischen Makrozönosen auch im Hinblick auf die WRRL nur unwesentlich beeinträchtigen. Beide Befunde werden durch die zeitgleiche Analyse der Mikrozönosen ergänzt.

Danksagung

Mein Dank gilt vor allem Herrn Dr. Eric Mauch, der den Anstoß zu der vorliegenden Arbeit gab.

Ohne Unterstützung der Studentinnen Ezgi Sönmez und Gözde Tan, die im Rahmen des Erasmus-Programms an unserem Institut ein Praktikum absolvierten, hätte diese Arbeit nicht so kurzfristig durchgeführt werden können.

Literatur

Eric Mauch & Thomas Wittling (1991): Der Einfluß von Fischteichanlagen auf den Gütezustand der Vorfluter. Biologische Untersuchungen an Bächen in Schwaben, BayernLauterbomia H. 8: 51-70, Dinkelscherben

Aline Foschepoth (2008): Diplomarbeit zum Themenkomplex: Ökologische Bewertung eines Mittelgebirgsbaches

Schmid-Araya (2000), Trophic relationships: integrating meiofauna into a realistic benthic food web, Freshwater Biology, Volume 44, Issue 1, pages 149–163, Wiley edition Methodisches Handbuch zur Fließgewässerbewertung nach PERLODES, www.fliessgewaesser.de, abgerufen am 31.07.2013

Deutsche Gesellschaft für Limnologie (DGL) Erweiterte Zusammenfassungen der Jahrestagung 2013 (Potsdam-Berlin), Hardegsen 2014

Entwicklung eines dreidimensionalen, gekoppelten Modells zur Untersuchung der Wasserqualität des Bodensees

Adrian Horn

Institut für Seenforschung, Argenweg 50/1, 88085 Langenargen, adrianhorn@web.de

Keywords: gekoppelte, dreidimensionale Modellierung, hydrodynamische Modellierung, Wasserqualitätsmodell, Bodensee

Einleitung

Der Bodensee ist mit einem Anteil von 0,04 % an der Gesamtheit der Süßwasserseen der Erde (IGKB 2004) ein wichtiges Trinkwasserreservoir, beliebtes Naherholungsgebiet, durch die zahlreichen Schiffswege wichtiger Teil der Infrastruktur, aber vor allem ein komplexes Ökosystem und damit Lebensraum für zahlreiche Pflanzen und Tiere. Um all diese Aspekte miteinander zu vereinbaren, bedarf es eines optimalen Gewässermanagements. Dies umfasst nicht nur eine intensive und kontinuierliche Untersuchung des Gewässers, sondern auch Werkzeuge, um die Zusammenhänge innerhalb dieses Ökosystems besser verstehen und beschreiben zu können. Eines dieser Werkzeuge stellt die Modellierung eines Gewässers dar, mit deren Hilfe es möglich ist, Änderungen im System See zu untersuchen, ohne dass diese in der Realität wirksam werden. Über ein fundiertes Modell kann so der Einfluss eines Schadstoffs oder einer überhöhten Dosis eines natürlich vorkommenden Stoffes auf das Ökosystem untersucht und so gegebenenfalls Maßnahmen zum Schutz des Gewässers abgeleitet werden. Ebenfalls können Folgen möglicher Klimaänderungen analysiert werden, um so das Gewässermanagement für die Zukunft zu gestalten.

Derartige Modelle können nur auf Basis umfassender Messungen und detaillierten Beschreibungen der Zusammenhänge und Eigenschaften eines Ökosystems erstellt werden. Die langjährigen und intensiven Untersuchungen des Bodensees, unter anderem durch die Internationale Gewässerschutzkommission des Bodensees (IGKB), eignen sich daher besonders als Grundlage zur Erstellung eines Wasserqualitätsmodells.

In der hier vorliegenden Arbeit wurde die Kopplung eines dreidimensionalen, hydrodynamischen Modells mit einem Wasserqualitätsmodell durchgeführt. Dabei wurde das Modellsystem Delft3D¹ der Firma DELTARES mit seinen Modulen FLOW (hydrodynamisches Modell) und WAQ (Wasserqualitätsmodell) verwendet und auf den Bodensee angepasst. Schwerpunkt dieser Arbeit war es, die zeitlichen und räumlichen Änderungen bestimmter Stoffe zu simulieren und mit gemessenen Daten zu vergleichen, um so das erstellte Modell zu validieren. Die folgenden Wassergüteparameter wurden dabei besonders berücksichtigt: Wassertemperatur, Sauerstoff, Phosphor, Stickstoff, Silizium und Chlorophyll-a. Weitere, vom Modell simulierte Parameter, wurden nur exemplarisch diskutiert. Zudem erfolgte für beide Module eine Sensitivitätsanalyse, um mögliche Vereinfachungen und Fehlerquellen zu detektieren.

Abschließend wurde das gekoppelte Modell mit einem bereits Bestehenden verglichen, sodass Vorund Nachteile in der Anwendbarkeit des Modells auf den Bodensee analysiert werden konnten.

_

¹ http://www.deltaressystems.com/hydro/product/621497/delft3d-suite

Material und Methoden

Untersuchungsgebiet

Das Einzugsgebiet des Bodensees beträgt rund 11 500 km², wobei der Anteil des Alpenrhein-Einzugsgebietes 56 % beträgt. Für den Stoffhaushalt ist es von entscheidender Bedeutung, dass knapp die Hälfte des Einzugsgebiets des Bodensees landwirtschaftlich genutzt wird und somit viele diffuse Quellen vorhanden sind.

Bei Konstanz wird der Bodensee in den Obersee und den Untersee geteilt (Tab. 1). Diese lassen sich wiederum in verschiedene Bereiche mit ihren unterschiedlichen Gegebenheiten unterteilen.

Tabelle 1: Kennwerte des Bodensees

	gesamter Bodensee	Obersee	Untersee
Seeoberfläche	536 km²	473 km²	63 km²
Mittelwasserstand		395,45 m ü. NN	395,11 ü. NN
Wasservolumen	48,4 km³	47,6 km³	$0.8~\mathrm{km^3}$
maximale Tiefe		254 m	40 m
mittlere Tiefe		101 m	13 m
Uferlänge	273 km	186 km	87 km
Seelänge		63 km	
Seebreite		14 km	

Modellsystem Delft3D

Im hydrodynamischen Modul werden mit Hilfe von Bewegungs- und Transportgleichungen Wasserbewegungen, wie Strömungen und turbulente Durchmischung simuliert. Die numerischen Berechnungen erfolgen dabei mit Lösungsverfahren für Finite-Differenzen.

Die schrittweise Anpassung des Modells beinhaltete die genaue Analyse der benötigten Eingangsgrößen, wie Informationen der Zuflüsse über Menge, ihrer Wassertemperatur und der Konzentration an Nährstoffen. Als Grundlage zur Simulation der hydrodynamischen Verhältnisse dienten zudem Zeitreihen der meteorologischen Verhältnisse, wie Lufttemperatur und Globalstrahlung. Informationen über die Windgeschwindigkeit und Windrichtung wurden, wie alle meteorologischen Daten, als räumlich konstant über der gesamten Seefläche vorgegeben.

Die Ergebnisse der hydrodynamischen Simulation wurden als Eingangsdaten für das Wasserqualitätsmodell genutzt und mit den Stoffkonzentrationen (PO4, NO3, NH4, Si, O2) der Zuflüsse ergänzt. Startbedingungen ergaben sich bei Möglichkeit durch Messergebnisse. Weiterhin wurden die modellinternen Prozesse mit Hilfe von Literaturrecherche und Anpassung an Messwerte von zwei Messstationen (Fischbach-Uttwil (FU) und Bregenzer Bucht) kalibriert.

Ergebnisse und Diskussion

Temperatur

Der Vergleich der ermittelten Temperaturwerte mit Messdaten ("BOWIS") (Abb. 1) hinsichtlich des Tiefenverlaufs und deren zeitlicher Verläufe ergab zufriedenstellende Übereinstimmungen. So konnten die Oberflächentemperaturen des Wasserkörpers sowohl an der Station Fischbach-Uttwil, als auch in der Bregenzer Bucht sehr gut vom Modell wiedergegeben werden und stellten somit eine akzeptable Grundlage für die Simulation der Wasserqualitätsprozesse dar. Die Verwendung eines räumlich und zeitlich höher aufgelösten Windfeldes wird trotzdem empfohlen, um Schwankungen der Wassertemperaturen bei kurzzeitigen Starkwind–Ereignissen besser abbilden zu können. Eine Tendenz zur Unterschätzung der Temperatur bildete sich an der Messstelle FU auf Grund der größeren Tiefe deutlicher aus, als in der Bregenzer Bucht. Der über die verschiedenen Messtiefen gemittelte Korrelationskoeffizient an der Stelle FU betrug 0,86, wobei die Korrelation für Seeoberflächentemperaturen 0,98 betrug.

Sauerstoff

Die Sauerstoffkonzentration nahe der Oberfläche wurde vom Modell besonders für die Seemitte sehr gut wiedergegeben (Abb. 2), was vor allem auf die hervorragende Abbildung der Temperatur und der geeigneten Zeitreihe der Windgeschwindigkeit, als Steuergröße der Belüftung, zurückzuführen war. Dagegen konnte der für Monate mit Stratifikation typische negativ heterograde Sauerstoffverlauf mit der Tiefe (Minimum der Konzentration im Metalimnion) an der Station FU nicht vom Modell abgebildet werden. Die orthograde Kurve (Maximum in Höhe des Metalimnion), welche vom Modell ausgegeben wurde, ist unter anderem auf fehlerhafte Einstellungen hinsichtlich der Photosyntheserate, Absinkrate und Abbauprozessen des Phytoplanktons zurückzuführen. Ebenfalls wurden die Abbauprozesse von Organismen im Hypolimnion unterschätzt, so dass es zur Überschätzung der tatsächlichen Sauerstoffkonzentration kam. Dieser Fehler äußerte sich am deutlichsten über Seegrund. Folgen von Durchmischungsprozessen (Anstieg der Sauerstoffkonzentration im Hypolimnion) wurden in ihrer Intensität und ihrem zeitlichen Auftreten angemessen wiedergegeben.

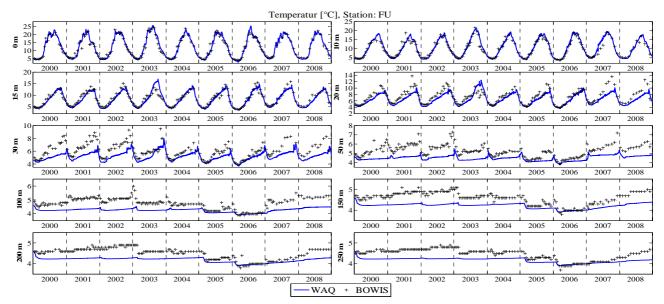
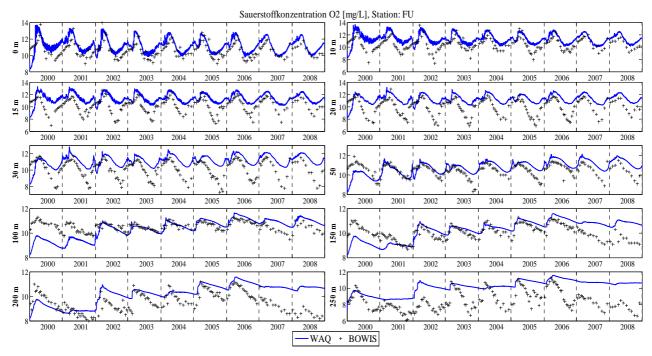



Abbildung 1: Vergleich simulierter Temperaturwerte (°C) ("WAQ") mit gemessenen Werten ("BOWIS") der

Station Fischbach-Uttwil, Zeitraum 2000-2008

Abbildung 2: Vergleich simulierter Sauerstoffkonzentrationen (mg/L) ("WAQ") mit gemessenen Werten ("BOWIS") der Station Fischbach-Uttwil, Zeitraum 2000-2008

Phosphor

Eine plausible Simulation des limitierenden Faktors ist grundlegend für die Anpassung und die Berechnung der Phytoplanktonentwicklung im Modell. Die Orthophosphatkonzentration der oberflächennahen Schichten des Wasserkörpers bis 15 m wurde vom Modell hervorragend wiedergegeben (Abb. 3). Die durch Mischungsprozesse einsetzenden Konzentrationsanstiege im Frühjahr wurden in ihrer Intensität und ihrem zeitlichen Auftreten ebenso gut abgebildet, wie die im Zeitraum der Jahre 2000 bis 2009 fortschreitende Abnahme der Orthophosphatkonzentration des Bodensees. Die Orthophosphatkonzentrationen in den Tiefen bis 200 m wurden tendenziell vom Mo-

dell überschätzt. Die Phosphorrücklösung als wichtiger Teil des Stoffkreislaufs konnte vom Modell nur ungenügend abgebildet werden. Zwar zeigten sich nur geringe Differenzen zwischen Messdaten und Modellergebnissen am Seegrund, jedoch wurden auftretende Schwankungen durch Sedimentrücklösung vom Modell kaum wiedergegeben.

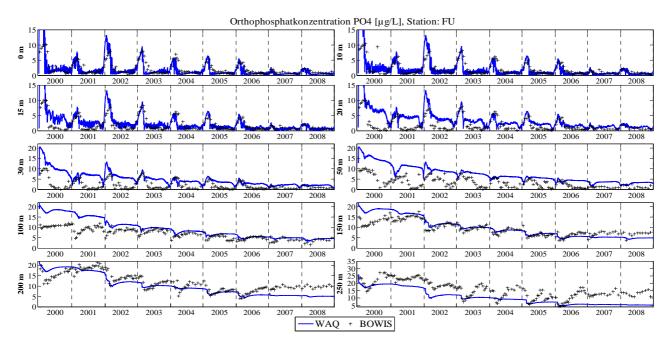


Abbildung 3: Vergleich simulierter Orthophosphatkonzentration ($\mu g/L$) ("WAQ") mit gemessenen Werten ("BOWIS") der Station Fischbach-Uttwil, Zeitraum 2000-2008

Zusammenfassung/Schlussfolgerungen

Das Modell liefert eine gute Grundlage zu weiterführenden Untersuchungen der Wasserqualität des Bodensees. Es zeigten sich gute Übereinstimmungen mit Messwerten bei den wohl wichtigsten Parametern der Wasserqualitätsmodellierung (Temperatur, Sauerstoff, Phosphor). Für die Berechnung von Folgen möglicher Klimaänderungen müssen jedoch weitere Vereinfachungen getroffen werden, welche die Rechenzeit reduzieren. Dennoch bietet das Modell die Möglichkeit, sehr komplexe Zusammenhänge in einem Ökosystem zu modellieren und abzubilden, sowie Informationen zur Entwicklung verschiedener Wassergüteparameter auf unterschiedlichen Zeitskalen - von Tagen bis Dekaden - zu liefern.

Danksagung

Die vorliegende Arbeit entstand im Rahmen einer Diplomarbeit. Für die große Unterstützung möchte ich mich bei meinem Betreuer Dr. Thomas Wolf und dem gesamten Team des Instituts für Seenforschung herzlich bedanken. Mein Dank gebührt ebenso Hans Los und der Firma DELTA-RES für ihre Hilfe und die Einladung nach Delft.

Literatur

IGKB (2004): Der Bodensee Zustand-Fakten-Perspektiven. 1.Auflage, Land Vorarlberg Umweltinstitut, Bregenz

User Manual Delft3D-FLOW, Ver. 3.15, Rev. 18392, Deltares, Delft, 2011

User Manual Delft3D-WAQ, Ver. 4.03, Rev. 15587, Deltares, Delft, 2011

© BOWIS - Daten aus dem Bodensee-Wasserinformationssystem der Internationalen Gewässerschutzkommission für den Bodensee (IGKB)

Deutsche Gesellschaft für Limnologie (DGL) Erweiterte Zusammenfassungen der Jahrestagung 2013 (Potsdam-Berlin), Hardegsen 2014

Netzverfügbarkeit primärer Biodiversitätsdaten: Schritt für Schritt zur BioCASe-Anbindung limnologischer Datenquellen an das GBIF-Netzwerk

Wolf-Henning Kusber¹, Sabine von Mering¹ & Jörg Holetschek¹

Keywords: BioCASe, Biodiversität, Datenverfügbarkeit, Global Biodiversity Information Facility, Observationsdaten

Einleitung

Eine der Kernaufgaben des *Consortium of European Taxonomic Facilities*, einem Verbund bedeutender europäischer Wissenschaftsinstitutionen (CETAF o. J.) ist die Veröffentlichung biologischer Sammlungsdaten. Die biodiversitätsinformatischen Erfordernisse von CETAF werden durch Bio-CASe (*The Biological Collection Access Service for Europe*) abgedeckt. BioCASe wurde als transnationales Netzwerk aufgebaut, um einen einheitlichen Internet-gestützten Informationszugang zu biologischen Sammlungen in Europa zu ermöglichen. BioCASe umfasst unterschiedliche Produkte, die diesen Zielen dienen und für Beleg-, Beobachtungs- und Ex-Situ-Daten genutzt werden (Bio-CASe 2013).

Für die Internetverfügbarkeit digitaler Datensammlungen wurde die BioCASe Provider Software entwickelt, die zwischen Biodiversitäts-Datenbanken und Netzwerken vermittelt und eine Implementierung des BioCASe-Protokolls zum Datenaustausch darstellt. Letzteres regelt, wie XML-Abfragen und Antworten zu Biodiversitätsdaten im Internet übermittelt werden. Grundlage dazu sind ABCD-Konzepte (*Access to Biological Collection Data*) des ABCD-Schemas (Holetschek et al. 2012). Für die Endnutzer entscheidend sind BioCASe-Portale, die für die Suche und Ausgabe von BioCASe-Datensätzen optimiert sind.

Das BioCASe-Netzwerk ist gegenwärtig ein bedeutender Partner für verschiedene Biodiversitätsdaten-Netzwerke. So wird beispielsweise ein Großteil der BioCASe-Datensammlungen an die *Global Biodiversity Information Facility* (GBIF), eine internationale Initiative zur Förderung von freiem Zugang zu primären Biodiversitätsdaten über das Internet, geliefert (GBIF 2013). Anfang 2014 wurden mehr als 430 Millionen Datensätze aller Organismengruppen für Forschung, Naturschutz und Bildung über das globale GBIF-Netzwerk zur Verfügung gestellt. Ausrichtung und Ziele von GBIF sowie Teilnahme von Staaten und nichtstaatlichen Organisationen werden durch ein *Memorandum of Understanding* geregelt (GBIF 2010), Regeln der Datenbereitstellung und -nutzung durch ein GBIF *Data Sharing Agreement* bzw. ein GBIF *Data Use Agreement* festgelegt (GBIF 2013).

GBIF-D (http://www.gbif.de) als nationaler GBIF-Knoten fördert die Anbindung komplexer Daten mithilfe von BioCASe und den Aufbau von *Special Interest*-Netzwerken (GBIF-D 2014). Das

¹ Botanischer Garten und Botanisches Museum Berlin-Dahlem, Freie Universität Berlin, Königin-Luise-Str. 6-8, 14195 Berlin, w.h.kusber@bgbm.org, s.vonmering@bgbm.org, j.holetschek@bgbm.org

ABCD-Datenschema ist vor allem für die Abbildung von vorliegenden Mehrfachbestimmungen zu einem Datensatz oder komplexen Beziehungen zwischen einzelnen Datensätzen zwingend erforderlich. Beispiele für letzteres sind z. B. Verknüpfungen zwischen Wirt und Parasit, aber auch zwischen Belegdaten und aus den Organismen gewonnenen DNA-Proben (DNA-Bank-Netzwerk, siehe Dröge et al. 2013).

Warum Biodiversitätsdaten im Internet zur Verfügung stellen?

Für alle Biodiversitätsdaten gilt, dass sie über gemeinsame Datenportale im Internet leichter gefunden, wissenschaftlich genutzt und häufiger zitiert werden können. Durch eine verbesserte Datenzugänglichkeit ist eine effektivere Datennachnutzung und Analyse einmal erhobener Daten möglich. Die Sichtbarkeit von Primär- und Metadaten, Projekten und Institutionen wird durch die Bereitstellung in Datennetzwerken deutlich erhöht.

Während sich in Forschungssammlungen weitgehend durchgesetzt hat, Biodiversitätsdaten so umfangreich wie möglich verfügbar zu machen, ist die Biodiversitätsforschung in einer Übergangsphase, hin zur obligatorischen allgemeinen Bereitstellung von Forschungsprimärdaten in öffentlich zugänglichen Datenrepositorien (Berendsohn et al. 2010, Ludwig & Enke 2013). Bei Landesämtern gibt es bezüglich von Biodiversitätsdaten aus dem Monitoring eine zunehmende Akzeptanz für die Bereitstellung in Biodiversitätsnetzwerken. Fragen u. a. der Datenrechte, der Datenqualität und des Umgangs mit den Umweltinformationsgesetzen der Länder bedingen allerdings längerfristige Abstimmungsprozesse.

Im Bereich der Bürgerwissenschaften ("Citizen Science") handelt es sich meist um ehrenamtlich erhobene Biodiversitätsdaten, deren Nutzbarkeit über einschlägige Citizen Science-Portale (z. B. GEO-Tag, Naturgucker u. a.) hinaus, durch Veröffentlichung in internationalen Biodiversitätsnetzwerken deutlich erhöht werden kann.

Wie Biodiversitätsdaten im Internet zur Verfügung stellen?

Wollen Datenbesitzer ihre Biodiversitätsdaten für Biodiversitätsnetzwerke zur Verfügung stellen, gibt es verschiedene Verfahren der technischen Anbindung (GBIF 2011). In den nächsten Abschnitten werden die Schritte vom vorhandenen Datenbestand bis zur Anbindung an das GBIF-Netzwerk mit Hilfe von BioCASe dargestellt. Der Ablauf beginnt mit der Analyse der Datenstruktur und der Datenbereinigung. Die folgenden Schritte sind die Vorbereitung der Metadaten, Installation der BioCASe Provider Software und Datenbereitstellung sowie das Mapping der individuellen Datenbank-Inhalte und die Indexierung bis zur Datenpublikation in Biodiversitätsdatenportalen.

Analyse der Datenstruktur und Datenbereinigung

Die Nutzbarkeit der Daten hängt unter anderem von der Datenstruktur ab. Ein möglichst hoher Grad an Atomisierung der Daten ist vorteilhaft, d. h. eine Speicherung unterschiedlicher Dateninhalte in verschiedenen Feldern. Datenbereinigung umfasst sehr unterschiedliche Felder der Datenbehandlung. Für einfachere Routinekontrollen und -korrekturen eignen sich automatisierte Verfahren, z. B. mit Hilfe von Webservices; komplexere Datenkontrollen sollten dagegen weiterhin von Experten vorgenommen werden (Chapman 2005). Wichtige Aspekte sind die Standardisierung von Daten und die Richtigkeit der Einträge. Fragen der Datenqualität vor der Datenpublikation in Biodiversitätsnetzwerken wurden in Kusber et al. (2012, 2013), von Mering & Kusber (2013) dargestellt und

diskutiert. Komplementär zur Datenkorrektur an der Basis, d. h. beim Datenhalter, sind fachwissenschaftliche Anmerkungen zu publizierten BioCASe-Datensätzen im Internet, die inzwischen in einfacher Weise möglich sind. Der elektronische Annotationsvorgang wird in Tschöpe et al. (2013) dargestellt und dokumentiert.

Vorbereitung der Metadaten

Metadaten geben Auskunft über die administrative und technische Zuständigkeit von Datensammlungen, den Datenbesitzer (bei öffentlich geförderten Datenerhebungen meist Institutionen), Namen und Codes der Institutionen und Datensammlungen, Angaben zu Rechten an den Daten und Lizenzen für Nutzer. Sie enthalten auch eine kurze Beschreibung der Datensammlung, die z. B. über Umfang, Geschichte und Forschungsinteresse der Objektsammlung Auskunft geben kann. Metadaten werden dazu verwendet, eine Datensammlung zu beschreiben, ihre regionale und globale Relevanz zu charakterisieren, auf die Datennutzung Einfluss zu nehmen und auf das Webangebot des Datenproviders bzw. die Originaldatenquelle zu verlinken.

Datenbereitstellung

In der Regel werden Originaldaten auf einem Internet-Server bereitgestellt. Daten, die nicht zur Veröffentlichung geeignet sind, müssen vor der Datenbereitstellung herausgefiltert werden. D. h. die inhaltliche Kontrolle (Datenkuration) liegt in den Händen des Datenhalters. Daher wird selten die Datenbank selbst abgefragt, sondern eine speziell für die Datenweitergabe an Datennetzwerke erstellte Sicht (View). Grundsätzlich sollten die Daten möglichst direkt durch den Datenhalter bereitgestellt werden, um deren Aktualität zu gewährleisten. In Fällen, in denen es technische oder administrative Schwierigkeiten bei der Datenbereitstellung gibt, ist ein Datenhosting durch GBIF-D Knoteninstitutionen (GBIF-D 2014) möglich, allerdings aufgrund der Notwendigkeit der Updates immer nur eine Notlösung.

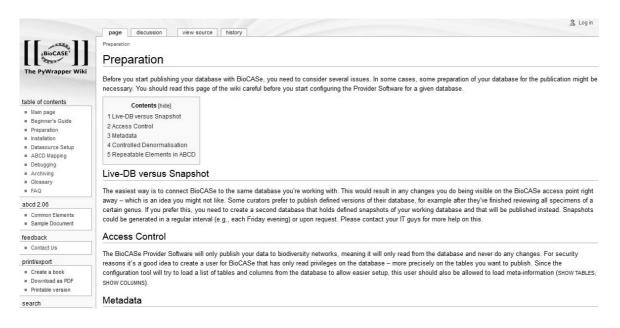


Abb. 1: Wiki zur Dokumentation der BioCASe Provider Software und der Einrichtung von ABCD-Datenquellen (N. N. 2011).

Installation der Provider Software

Um die vorbereiteten Daten im GBIF-Netzwerk zur Verfügung zu stellen, ist die Installation der BioCASe Provider Software notwendig. Umfassende Dokumentation bietet das BioCASe-Wiki (Abb. 1, N. N. 2011); persönliche Hilfestellung leistet der BioCASe-Support.

Mapping

Das Mapping ist die Zuordnung der Datenbankinhalte des Datengebers zu den entsprechenden Feldern des zum Datenaustausch genutzten ABCD Datenstandards. Diese Zuordnung ist mit Hilfe eines einfach zu bedienenden Konfigurationstools der BioCASe Provider Software möglich. Hilfestellung können auch hier BioCASe-Wiki (Abb. 1) und BioCASe-Support leisten.

Registrierung und Indexierung

Durch die Registrierung von Datenquellen bei BioCASe bzw. GBIF wird diese dem jeweiligen Netzwerk bekannt gemacht. Zur schnelleren Suche und besseren Darstellung der angebundenen Daten speichern die Netzwerke häufig verwendete Datenelemente in Cache-Datenbanken zwischen; dieser Vorgang wird Indexierung genannt. Das GBIF-Datenportal (GBIF 2013) beschränkt sich bei der Darstellung auf diese indexierten Informationen, BioCASe-Portale hingegen können alle vom Provider gelieferten Originaldaten sichtbar machen.

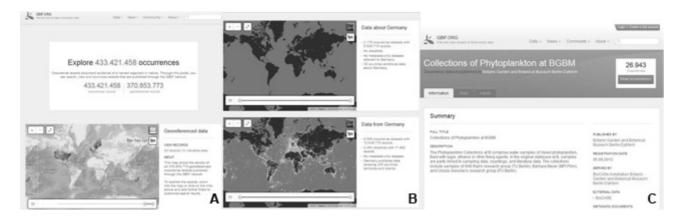


Abb. 2: Ansichten des 2013 neu entwickelten Portals der Global Biodiversity Information Facility (GBIF 2013). A. Zugriff auf 433 Millionen Observationen. B. Observationsdaten zu Deutschland (oben), Observationsdaten deutscher Datenanbieter (unten). C. Metadaten-Darstellung am Beispiel einer BioCASe-Datenquelle zu Belegproben am BGBM aus der limnologischen Forschung

Datendarstellung in Biodiversitätsportalen

In verschiedenen Portalen werden im GBIF-Netzwerk publizierte Biodiversitätsprimärdaten ausgegeben und suchbar gemacht. Das GBIF-Datenportal (Abb. 2, http://www.gbif.org) ermöglicht die gemeinsame Suche über alle geographischen Regionen und alle Organismengruppen hinweg. Bio-CASe-Portale nutzen häufig Teilmengen dieser Daten, um sogenannte *Special Interest Networks* zu bilden. Das 2013 veröffentlichte GBIF-D Algae & Protozoa Datenportal (http://protists.gbif.de)

stellt aktuell 7,6 Millionen Datensätze zu limnischen und marinen Protisten mithilfe von BioCASe-Technologie zur Verfügung (GBIF-D 2013, Kusber et al. 2013).

Danksagung

GBIF-D Pflanzen, Algen & Protisten wird vom Bundesministerium für Bildung und Forschung (BMBF), Projekt LI1001A finanziert. Der deutsche Beitrag für GBIF wird durch BMBF und DFG getragen.

Literatur

- Berendsohn, W. G., Chavan, V., Macklin, J. A. (2010): Recommendations of the GBIF Task Group on the Global Strategy and Action Plan for the Mobilisation of Natural History Collections Data. J. Biodiversity Informatics 7: 67-71.
- BioCASe (2013): Biological Collection Access Services Homepage. Published on the Internet http://www.biocase.org [25.01.2014].
- CETAF (o. J.): CETAF Consortium of European Taxonomic Facilities. Published on the Internet http://www.biocase.org [03.02.2014]
- Chapman, A. D. (2005): Principles of Data Quality, version 1.0. Report for the Global Biodiversity Information Facility, Copenhagen. 58 S.
- Droege, G., Barker, K., Astrin, J., Partels, P., Butler, C., Cantrill, D., Coddington, J., Forest, F., Gemeinholzer, B., Hobern, D., Mackenzie-Dodds, J., Ó Tuama, É., Petersen, G., Sanjur, O., Schindel, D., Seberg, O. (2013): The Global Genome Biodiversity Network (GGBN) Data Portal. Nucleic Acids Research. 42 (D1): D607-D612. DOI:10.1093/nar/gkt928
- GBIF (2013): Global Biodiversity Information Facility Published on the Internet http://www.gbif.org [25.01.2014]
- GBIF (2011): Getting Started: An overview of data publishing in the GBIF network, (contributed by Remsen, D., Ko, B., Chavan, V., Raymond, M.). Copenhagen: Global Biodiversity Information Facility, 16 S. ISBN: 87-92020-28-3. Published on the Internet http://links.gbif.org/getting_started_publishing_en_v1 [10.02.2014]
- GBIF (2010): GBIF Memorandum of Understanding, Copenhagen: Global Biodiversity Information Facility, S., Published on the Internet at http://www.gbif.org/orc/?doc_id=2955 [11.02.2014]
- GBIF-D (2014): Global Biodiversity Information Facility Deutschland. Published on the Internet http://www.gbif.de 11.02.2014]
- GBIF-D (2013): GBIF.DE Algae & Protozoa Data Portal. Published on the Internet http://protists.gbif.de [10.02.2014]
- Holetschek J., Dröge G., Güntsch A., Berendsohn W.G. (2012): The ABCD of primary biodiversity data access. Plant Biosystems An International Journal Dealing with all Aspects of Plant Biology. 146: 771-779.
- Kusber, W.-H., Dröge, G., von Mering, S., Jahn, R. (2012): GBIF-D Pflanzen, Algen & Protisten: Mobilisierung und Publikation primärer Biodiversitätsdaten für die Nutzung in internationalen Datennetzwerken. Deutschen Gesellschaft für Limnologie, Erweiterte Zusammenfassungen der Jahrestagung 2011 (Weihenstephan), Eigenverlag der DGL, Hardegsen: 406-410.
- Kusber, W.-H., von Mering, S., Jahn, R. (2013): GBIF-Dateninfrastruktur: Limnologische Beobachtungsund Belegdaten publizieren, abfragen und analysieren. Deutschen Gesellschaft für Limnologie, Erweiterte Zusammenfassungen der Jahrestagung 2012 (Koblenz), Eigenverlag der DGL, Hardegsen: 485-489.
- Ludwig, J. & Enke, H. (Hrsg.) (2013): Leitfaden zum Forschungsdaten-Management. Glückstadt: Verlag Werner Hülsbusch: 118 S.
- N.N. (2011): BioCASe Provider Software. Published on the Internet http://wiki.bgbm.org/bps/index.php/Main_Page [25.01.2014].
- Tschöpe, O., Macklin, J. A., Morris, R. A., Suhrbier, L., Berendsohn, W. G. (2013): Annotating Biodiversity Data via the Internet. Taxon 62: 1248-1258.
- von Mering, S., Kusber, W.-H. (2013): GBIF data network infrastructure for biodiversity research. Open access to occurrence data of steppe species. Thüringer Ministerium für Landwirtschaft, Forsten, Umwelt und Naturschutz (TMLFUN), Steppenlebensräume Europas Gefährdung, Erhaltungsmaßnahmen und Schutz, Erfurt: 441-446 S.

Deutsche Gesellschaft für Limnologie (DGL) Erweiterte Zusammenfassungen der Jahrestagung 2013 (Potsdam-Berlin), Hardegsen 2014

Measuring dissolved greenhouse gases in peat-draining rivers with FTIR spectroscopy

Denise Müller^{1,2*}, Thorsten Warneke¹, Tim Rixen², Moritz Müller³, Justus Notholt¹

1 Institute of Environmental Physics (IUP), University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany. 2 Leibniz Center for Tropical Marine Ecology (ZMT), Fahrenheitstr. 6, 28359 Bremen, Germany. 3 Swinburne University of Technology, School of Engineering, Computing and Science, Jalan Simpang Tiga, 93350 Kuching, Sarawak, Malaysia. *Email: dmueller@iup.physik.uni-bremen.de.

Keywords: carbon flux, river, greenhouse gas emissions, peatlands, tropics, carbon cycle

Introduction

Until recently, rivers have been considered as "passive pipes" in most carbon models (Cole et al. 2007), transporting particulate and dissolved matter from the land to the ocean. Recent research, however, suggests that rivers are highly active systems and an understudied source of greenhouse gases (GHG) to the atmosphere. In particular, fluvial carbon transport and GHG production in tropical peat-draining rivers is not well quantified. Tropical peatlands store large amounts of organic carbon. Their carbon density is among the highest of all terrestrial ecosystems (Page et al. 2011). Peat-draining rivers receive large amounts of carbon from these soils (Baum et al. 2007, Rixen et al. 2008). Moore et al. 2013 showed that disturbance of tropical peatlands, such as deforestation and drainage, results in the release of more and older dissolved organic carbon (DOC) to the aquatic system. However, its fate was not resolved. It is likely that a substantial part of the DOC is converted to CO₂ or CH₄, which might ultimately be emitted to the atmosphere. Therefore, our study aims to quantify GHG concentrations in tropical peat-draining rivers and resultant emissions to the atmosphere. Here, we present our method and first results from a short initial sampling campaign.

Materials and Methods

Study area

The Malaysian state of Sarawak is located on the island of Borneo, which is politically divided between Indonesia, Malaysia and Brunei. It is separated from Peninsula Malaysia by the South China Sea. Sarawak has tropical climate with high temperatures, rainfall and humidity. Precipitation is pronounced during the northeast monsoon, which occurs between November and February. Sarawak holds the largest share of Malaysia's peatlands. They are mainly found as peat swamp forest (PSF) in the coastal area. However, in recent decades, Sarawak's PSF experienced severe degradation. PSF was deforested at a rate of 8 % annually between 2005 and 2010 (SarVision 2011). Our study area is located in the vicinity of a national park with protected PSF. A first sampling campaign was performed during a short ship cruise in June 2013 in the estuaries of the rivers Lupar and Saribas, which border the national park, and the Sadong river, which flows through cultivated land. We went several kilometers upstream of the main rivers and one Saribas tributary.

Methods

We measured dissolved greenhouse gases in the river water with an in-situ Fourier Transform InfraRed (FTIR) spectrometer, which was manufactured at the University of Wollongong, Australia (Griffith et al. 2012). It allows for the simultaneous measurement of major GHG (CO₂, CH₄, CO, N₂O and δ^{13} C in CO₂) with high accuracy and precision. The instrument was connected to a Weiss equilibrator (Johnson 1999), which enabled us to measure dissolved greenhouse gases continuously during the entire cruise. Additionally, we took water samples that were analyzed for dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), nutrients, and δ^{13} C in DIC. Particulate material was sampled on glass fiber filters and analyzed for carbon and nitrogen contents and their isotopic composition.

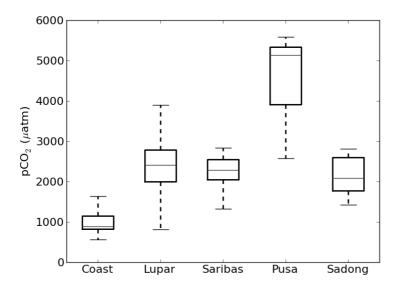


Fig. 1: pCO_2 measured during the ship cruise in June 2013, separated by river section studied. Whiskers represent data within 1.5 times the interquartile range.

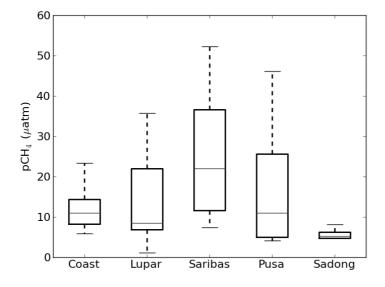


Fig. 2: pCH₄ measured during the ship cruise in June 2013, separated by river section studied. Whiskers represent data within 1.5 times the interquartile range.

Results and Discussion

Overall, the river sections studied had CO₂ and CH₄ partial pressures higher than the respective atmospheric equilibrium value. Fig. 1 and 2 show medians and data distributions for the different

river sections that we studied. For the coastal (however freshwater influenced) area, the median pCO₂ value was 887 μ atm. The river sections of Lupar, Saribas and Sadong had similar pCO₂ of 2416 μ atm, 2295 μ atm and 2090 μ atm, respectively. For the smaller Pusa river (the Saribas tributary), the median pCO₂ was found to be 5143 μ atm. We also found that pCO₂ was correlated with DOC (not shown). This could indicate that in-situ respiration may be an important source of dissolved CO₂ in the water. For methane, the distinction between the different river sections did not reveal a specific pattern. pCH₄ was very variable and ranged from 1.2 μ atm to 64 μ atm (median for all data = 11 μ atm).

Aufdenkampe et al. 2011 reported a median pCO₂ of 3600 ppm (corresponds to approx. 3600 μ atm at ambient pressure) for tropical rivers wider than 60-100 m. The values we found for Lupar, Saribas and Sadong are somewhat lower, however, our campaign was conducted during the dry season. GHG concentrations in river water usually increase with discharge. Therefore, the values presented here are very likely at the lower end of the concentration range that can be expected for the study area. For tropical streams (<60-100 m wide), Aufdenkampe et al. 2011 reported a median pCO₂ of 4300 ppm. The only river fitting in this category that we studied was the Pusa river, with a comparatively higher pCO₂ of 5143 μ atm.

Summary and Conclusions

We measured the concentration of dissolved GHG in Malaysian peat-draining rivers with FTIR spectroscopy during a short initial sampling campaign. Our measurements showed that overall, the river sections that we studied were supersaturated with both CO_2 and CH_4 with respect to the atmosphere. We emphasize that our measurements are not representative for an entire hydrological year, as they were performed during the dry season. Rather, they represent a snapshot and give us a first idea of the lower end of the CO_2 and CH_4 concentration range. We expect higher pCO_2 and pCH_4 in the wet season. Future campaigns in this study area shall reveal the seasonal pattern of the CO_2 and CH_4 concentration in these rivers. The combination of the GHG measurements with the analysis of other carbon species (DOC, DIC, POC) and stable isotope analysis ($\delta^{13}C$ -DIC, $\delta^{13}C$ -POC) will help to unveil potential sources of GHG in these rivers. Floating chamber measurements are to help us assess the gas transfer velocity, which, in turn, shall enable us to calculate GHG emissions from peat-draining rivers in our study area.

References

- Aufdenkampe, A. K., Mayorga, E., Raymond, P. A., Melack, J. M., Doney, S. C., Alin, S. R., Aalto, R. E., and Yoo, K. (2011): Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front. Ecol. Environ., 9(1): 53-60. doi: 10.1890/100014.
- Baum, A., Rixen, T., Samiaji, J. (2007): Relevance of peat draining rivers in central Sumatra for the riverine input of dissolved organic carbon into the ocean. Estuarine, Coastal and Shelf Science 73(3-4): 563-570
- Cole, J.J., Prairie, Y. T., Caraco, N. F.; McDowell, W. H., Tranvik, L. J., Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., Middelburg, J. J., and Melack, J. (2007): Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget. Ecosystems 10: 171-184. doi: 10.1007/s10021-006-9013-8.
- Griffith, D. W. T., Deutscher, N. M., Caldow, C., Kettlewell, G., Riggenbach, M., and Hammer, S. (2012): A Fourier Transform Infrared trace gas and isotope analyser for atmospheric applications. Atmospheric Measurement Techniques, 5:2481-2498. doi: 10.5194/amt-5-2481-2012.
- Johnson, J. E. (1999): Evaluation of a seawater equilibrator for shipboard analysis of dissolved oceanic trace gases. Analytica Chimica Acta 395: 119-132.

- Moore, S., Evans, C. D., Page, S. E., Garnett, M. H., Jones, T. G., Freeman, C., Hooijer, A., Wiltshire, A. J., Limin, S. H., and Gauci, V. (2013): Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes. Nature, 493:660-664. doi: 10.1038/nature11818.
- Page, S. E., Rieley, J. O., and Banks, C. J. (2011): Global and regional importance of the tropical peatland carbon pool. Global Change Biology, 17:798-818. doi: 10.1111/j.1365-2486.2010.02279.x.
- Rixen, T., Baum, A., Pohlmann, T., Balzer, W., Samiaji, J., Jose, C. (2008). The Siak, a tropical black water river in central Sumatra on the verge of anoxia. Biogeochemistry 90 (2), 129-140
- SarVision (2011). Impact of oil palm plantations on peatland conversion in Sarawak 2005-2010. Summary report, 25th January 2011.

Deutsche Gesellschaft für Limnologie (DGL) Erweiterte Zusammenfassungen der Jahrestagung 2013 (Potsdam-Berlin), Hardegsen 2014

Umsiedlung einer Kreuzkröten-Population (*Bufo calamita*) mit Anlage eines Laichhabitates im westlichen Ruhrgebiet

Schweder, Heinrich¹, Hemmer, Guido², Huber, Christian¹ & Wilms, Ralf¹

Keywords: Kreuzkröte, Artenschutz, FFH-Richtlinie, Ersatzhabitat

Zusammenfassung

Im Rahmen der Oberflächenabdichtung einer Klärschlammdeponie wurde die Umsiedlung einer Kreuzkrötenpopulation aufgrund der artenschutzrechtlichen Bestimmungen erforderlich. Die streng geschützte Kreuzkröte ist eine ursprünglich in den Flussauen beheimateten Pionierart, die heute fast ausschließlich auf Sekundärstandorten vorkommt. Die Bestandserfassung wurde von 2012 bis 2013 mit Hilfe von künstlichen Tagesverstecken und Fangeimern, die werktäglich kontrolliert wurden, durchgeführt. Die Funktionsfähigkeit des Ersatz-Laichhabitates wird u. a. durch eine Tonmineralabdichtung sowie eine Solar-Grundwasserpumpe sichergestellt.

Einleitung

Die Klärschlammdeponie Mülheim-Raffelberg des Ruhrverbandes ist seit 2006 außer Betrieb. Als bautechnische Grundlage für eine nachfolgende Oberflächenabdichtung ist der Bau einer Gasdrainund Ausgleichsschicht geplant. Im Rahmen der Artenschutzprüfung für dieses Bauvorhaben wurde ein Vorkommen der Kreuzkröte, einer nach Anhang IV der FFH-Richtlinie streng geschützten Art, festgestellt. Nach § 44 BNatSchG muss in solchen Fällen sichergestellt sein, dass keine Tiere der streng geschützten Art durch das Bauvorhaben getötet werden und dass sich der Erhaltungszustand der lokalen Population nicht verschlechtert.

Material und Methoden

Untersuchungsgebiet

Das Untersuchungsgebiet befindet sich im westlichen Ruhrgebiet (Ruhrbogen Raffelberg, Mülheim a. d. R., Nordrhein-Westfalen). Die Kreuzkröte besiedelt hier ausschließlich Sekundärbiotope wie Abgrabungen, Industriebrachen, Bergehalden, Großbaustellen etc. Auf der Klärschlammdeponie nutzt diese Art Randgräben, die sich nach Niederschlägen zeitweise mit Wasser füllen, aufgrund der starken Eutrophierung jedoch ein suboptimales Laichhabitat darstellen.

Bestandserfassung

Zur Erfassung der lokalen Kreuzkrötenpopulation wurden 2012 insgesamt 50 Schaltafeln (1,50 x 0,5 m) auf der rd. 10 ha großen Deponie ausgelegt. Es ist bekannt, dass Kreuzkröten solche potenziellen Versteckplätze als Unterschlupfmöglichkeiten nutzen (Kordges 2009, Schmidt 2005, Specht 2009). Die Verteilung der Bretter im Gelände bietet die Möglichkeit, Verteilungsmuster und

¹ Ruhrverband, Kronprinzenstr. 37, D 45128 Essen, Deutschland, email: hsw@ruhrverband.de, ² Ökoplan, Savignystraße 59, D 45147 Essen, Deutschland

somit räumliche Präferenzen festzustellen. Zugleich lassen sich Rückschlüsse auf die Größenordnung sowie den Generationsaufbau der Population treffen. Das Gelände wurde zur Erfassung von Tieren unter den Brettern werktäglich aufgesucht, alle Bretter angehoben und der Boden unter den Brettern sowie Boden-Vertiefungen wie z.B. Mauselöcher auf versteckte Kreuzkröten und weitere Amphibien untersucht.

Zusätzlich wurde 2012 die Laich- und Rufaktivität an den potentiellen Laichgewässern an neun Terminen, davon 6 mit Tag- und Nachtkontrollen, erfasst. Durch das Verhören rufaktiver Tiere lassen sich weitere Hinweise auf mögliche Fortpflanzungsaktivitäten einer Population sowie auf die Größenordnung einer Population, insbesondere des aktuell fortpflanzungsfähigen Teils der Population gewinnen (Kordges & Willigalla 2011). Zur Feststellung von Reproduktionshinweisen wurden alle Gewässer auf dem Deponie-Gelände bei den Tages-Begehungen zur Kontrolle der Schalbretter nach Amphibienlaich oder -larven abgesucht. Dabei wurden - soweit der Wasserstand den Einsatz ermöglichte - auch Kescher zur Erfassung von Larven eingesetzt.

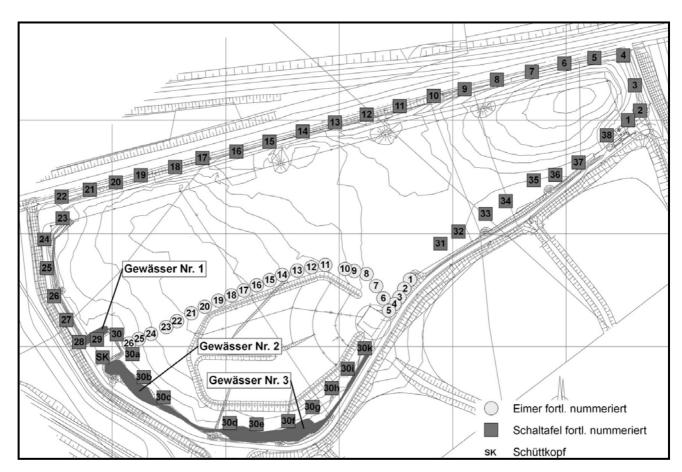
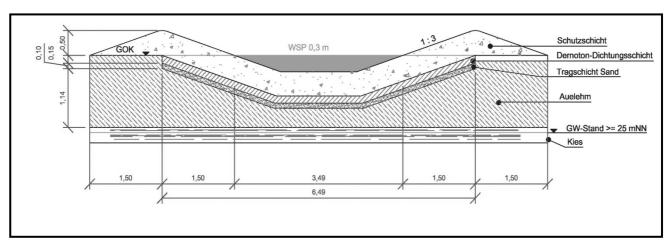



Abb. 1: Lage der 2013 aufgestellten Eimerfallen, der Schaltafeln sowie der Gewässer

Ein Baustoff-Zwischenlager auf dem Deponiegelände sollte bereits Ende 2012 beschickt werden; daher wurde dieses mit einem Amphibienzaun eingegrenzt und mit Fangeimern versehen. Die Fangeimer wurden ebenfalls werktäglich kontrolliert.

Im selben Jahr konnte nach umfangreichen Vorarbeiten ein Ersatzhabitat eingerichtet werden, in das die gefundenen Tiere umgesiedelt wurden. Das neue, 300 m² große Laichhabitat ist als flache Mulde angelegt (Abb. 2). Trotz des anstehenden Auelehms war aufgrund zu starker Durchlässigkeit des Untergrundes eine Abdichtung der Teichsohle mit einer Dichtungsschicht aus einer speziell hergestellten Ton-Sandmischung erforderlich. Da im Gebiet regelmäßig durch Ruhr-Hochwässer

der Grundwasserspiegel bis über die Geländeoberkante ansteigt, musste dieses naturnahe Laichbecken zudem auftriebssicher konstruiert werden. Eine Grundwasser-Solarpumpe stellt eine ausreichende Wasserversorgung der flachen Mulde sicher. Das umgebende 5.000 m² große Landhabitat, eine ehemalige Acker- und Lagerfläche, wurde aus der Nutzung genommen und mit Steinhaufen als

Tagesversteck ausgestattet (MKULNV NRW 2013).

Abb. 2: Aufbau des Ersatzhabitates

Im Jahr 2013 wurde die Bestandserfassung und Umsiedlung fortgesetzt. Eine Einzäunung der gesamten Deponie mit einem aus einer an Holzbohlen bzw. Zaungeflecht befestigten starken PE-Folie verhinderte die Zuwanderung von außen. Die 25 cm hohe Folie wurde soweit möglich 15 cm tief eingegraben und bildet ein für Kreuzkröten unüberwindbares Hindernis. Die Erfassung erfolgte mit 38 Schaltafeln entlang der Abzäunung am Deponierand, mit 26 Fangeimern entlang der Abzäunung des Baustofflagers sowie mit sechs spätabendlichen bzw. nächtlichen Begehungen.

Ergebnisse

2013 verblieben als potenzielle Laichhabitate für die Kreuzkröte die zum sogenannten Randgraben zählenden größeren Gewässer Nr. 2 und 3 sowie das kleinere Gewässer Nr. 1 im Randbereich des Schüttkopfes (Abb. 1). Im Bereich des Randgrabens konzentrierte sich in 2013 die Erfassung von rufaktiven Tieren, Laich und Larven auf dem Deponiegelände.

Bei der Erfassung an diesen Gewässern wurden in 2013 ausschließlich am Gewässer Nr. 2 Kreuz-krötenlaich und -larven sowie einzelne rufende adulte Kreuzkröten verzeichnet. Ein erstes Tier rief dort am 23.04.2013. Larven (entsprechend maximal einer Laichschnur) wurden dort erst am 07.05.13 verzeichnet. Diese wurden soweit möglich zu einem großen Teil (ca. 200 Larven) abgekäschert und in das Ersatzgewässer verbracht.

Alle Gewässer im Deponiebereich fielen im Zeitraum Ende Juli/Anfang August vollständig trocken. Aufgrund des hohen Nährstoffgehaltes des Untergrundes entwickelte sich frühzeitig ein starkes Fadenalgenaufkommen.

Am Ersatzgewässer wurde eine erste Laichschnur am 07.05.13 verzeichnet. Es folgte eine kontinuierliche Laichabfolge, so dass bis zum 29.05.13 insgesamt über 35 Laichschnüre registriert wurden. Eine grobquantitative Beurteilung der Larvenzahlen am 05.06.13 ergab eine Größenordnung von ca. 40.000 Larven. Die Anzahl dürfte zuvor noch größer gewesen sein, da bereits zahlreiche Prädatoren im Gewässer und in der Uferzone aktiv waren (vor allem Rückenschwimmer und Wasserkäfer sowie Limikolen und weitere Wasservögel). Am 26. Juni wurden zahlreiche Schlüpflinge (frisch metamorphosierte Jungtiere) im Uferbereich festgestellt. Ende Juli befanden sich keine Larven mehr im Gewässer.

Abb. 3: Ersatzhabitat mit Tagesverstecken und Solarpumpe im Vordergrund und Laichgewässer im Hintergrund

2013 wurden unter sieben der 38 Schaltafeln Kreuzkröten entdeckt. Besonders häufig wurden die Verstecke genutzt, die sich in einem Abschnitt der Deponie mit lückiger Vegetation befanden. Bis zum Abschluss der Erfassung am 15.10.13 wurden unter den Schalbrettern insgesamt 49 Kreuzkröten verzeichnet. Von diesen Tieren war der größte Teil (31 Tiere) der mittleren Größenordnung (3 bis 5 cm) zuzuordnen. Diese Altersgruppe befindet sich im Übergang zum Adultstadium, die z.T. im nächsten Jahr die Geschlechtsreife erreichen werden und daher die Voraussetzungen erfüllen, kurzfristig eine neue Teil-Population am Ersatzgewässer zu begründen. 10 Tiere waren kleiner als 3 cm und acht Tiere zählten zur Gruppe der Adulten (> 5cm).

In den Eimern wurden 2013 insgesamt 75 Kreuzkröten gefangen und zum Ersatzlebensraum umgesetzt. Auch bei den Eimerfängen nimmt die Gruppe der Subadulten mit 33 Exemplaren den größten

Anteil ein. In der Zeit, in der keine Kontrolle erfolgte (Wochenenden), wurden die Eimer mit Deckeln verschlossen, so dass keine Tiere hineinfallen konnten.

Von den 2013 insgesamt gefunden 124 Tieren sind 28 Tiere zur Gruppe der Adulten zu stellen. Weitere 64 Tiere – und somit der größte Teil der gefangenen Tiere – gelten als subadulte Vorjährige, 32 Tiere waren kleiner als 3 cm und sind der Altersgruppe der 2 bis 3 jährigen Tiere zuzurechnen. Diese Tiere traten im Gegensatz zu den beiden anderen Altersgruppen erst später im Jahr auf und wurden ab Mitte Juli bis Anfang September verzeichnet.

Die Aktivität der Kreuzkröten lässt häufig eine Korrelation zu steigenden, gemäßigten Temperaturen und Niederschlagsereignissen erkennen. Die Erfassung wurde Mitte Oktober abgeschlossen, da seit dem 3. Oktober Nachtfröste auftraten und nur noch wenige Tiere in den Eimern erfasst wurden.

Fazit

2012 wurden im Rahmen der Bestandserfassung 81 und 2013 insgesamt 124 Kreuzkröten im Bereich der ehemaligen Filterkuchendeponie erfasst und in den neu geschaffenen Ersatzlebensraum umgesetzt. Mit einer relativ hohen Anzahl von Tieren handelt es sich bei der festgestellten (Teil-) Population um eine bemerkenswerte Bestandsgröße (Günther & Meyer 1996) wie sie nur noch an wenigen Standorten im Ruhrgebiet festzustellen ist (Kordges & Willigalla 2011, Winkler 2013).

Durch die Schaffung des Ersatzlebensraumes wurde ein wertvoller Beitrag zur Stabilisierung der lokalen Kreuzkröten-Population geleistet. Voraussetzung für die Funktionsfähigkeit des Ersatzlebensraums ist die Pflege der aquatischen sowie der terrestrischen Habitatstrukturen, die im Rahmen eines Monitorings überwacht und gesteuert werden sollen. Wichtig ist hierbei auch das zeitweise Trockenfallen des Laichgewässers zur Reduzierung des Prädatorendrucks.

Literatur

Günther, R. & F. Meyer (1996): Die Kreuzkröte. In:

Günther, R. (Hrsg.) (1996): Die Amphibien und Reptilien Deutschlands. Jena, Stuttgart, Lübeck, Ulm. Kordges, T. (2009): Zum Einsatz künstlicher Verstecke (KV) bei der Amphibienerfassung. Zeitschrift für Feldherpetologie, Supplement 15: 327-340.

Kordges, T. & C. Willigalla (2011): Kreuzkröte. S. 623-666. In:

AK Amphibien und Reptilien in NRW in der Akademie für ökologische Landesforschung Münster e.V. (Hrsg.) (2011): Handbuch der Amphibien und Reptilien Nordrhein-Westfalens, Bd. 1.

MKULNV NRW (2013): Leitfaden "Wirksamkeit von Artenschutzmaßnahmen" für die Berücksichtigung artenschutzrechtlich erforderlicher Maßnahmen in Nordrhein-Westfalen. Forschungsprojekt des MKULNV Nordrhein-Westfalen (Az.: III-4 - 615.17.03.09). Bearb. FÖA Landschaftsplanung GmbH (Trier): J. Bettendorf, R. Heuser, U. Jahns-Lüttmann, M. Klußmann, J. Lüttmann, Bosch & Partner GmbH: L. Vaut, Kieler Institut für Landschaftsökologie: R. Wittenberg. Schlussbericht (online).

Schmidt, P. (2005): Kreuzkröte Bufo calamita. In:

Doepperding, A., C. Eichen, H. Gunnemann, P. Leopold, M. Neukirchen, J. Petermann & E. Schröder (Hrsg.): Methoden zur Erfassung der Arten der Anhänge IV und V der Fauna-Flora-Habitat-Richtlinie. Naturschutz und biologische Vielfalt 20: 225-229.

Specht, D. (2009): Zur Erfassung von Kreuzkröten (Bufo calamita) mittels Schaltafeln auf einer Bodendeponie. Zeitschrift für Feldherpetologie, Supplement 15: 341-350.

Winkler, C. (2013): Bestandsveränderung der Kreuzkröte (Bufo calamita) in der Emscherregion als Folge des Strukturwandels (1989-2013), dargestellt am Beispiel des Essener Nordens. Unveröff. Bachelorarbeit, Ruhr-Universität zu Bochum, Institut für Geographie.

CESAMTVERZEICHNIS NACH	EDGELIDODEN
C-RSAMITVERZEICHNIS NACH	HRZIVIKUKHZ

ATTERMEYER, K. & HP. GROSSART: Das Gute kommt von oben: Laub und der aquatische mikrobielle Kohlenstoffkreislauf	2
BÖLLMANN, J., M. MARTIENSSEN & B. GRÜNEBERG: Vergleich der mikrobiellen Nitratreduktion in Sediment und Pelagial eines eutrophen Flusssees und eines mesotrophen geschichteten Sees	35
Breidenbach, A., C. App, A. Grün, K. Hofmann, J. Meier & W. Manz: Auswirkung von Silbernanopartikeln auf die Struktur bakterieller Lebensgemeinschaften in Biofilmen aus Fließgewässer-Mesokosmen	18
BRIEGER, H. & K. G. LEIPELT: Der Vampir des Meeres: Biologie des Meerneunauges vermitteln	128
CORNELIUS, A. & P. MARTIN: Ökotoxikologische Untersuchungen an Wassermilben (Hydrachnidia, Acari)	117
CRON, N., TH. ZUMBROICH & I. QUICK: Bewertung und Prognose des ökologischen Potentials von Bundeswasserstraßen – Gewässerkategorien, Gewässertypen und Ausweisungsgründe nach Wasserrahmenrichtlinie	151
DAHM, V. & D. HERING: Where the wild things are – Konzept zur Ermittlung von Wiederbesiedlungsquellen im Einzugsgebiet	157
DOST, P. & TH. WOLF: Repräsentativität und Inhomogenitäten zweidimensionaler Windfelder und deren Einfluss auf Simulationsergebnisse im Strömungsmodell DELFT FLOW 3D	197
EIGEMANN, F., HP. GROSSART, X. CHANG & S. HILT: Interactions affect phytoplankton sensitivity towards allelochemicals	7
Fehse C., C. Herrmann, E. Sönmez, G. Tan & A. Hamm: Trophische Ebenen in Mittelgebirgsbächen unter dem Einfluss von Fischteichen	202
FRANK, C., R. MÜHLBERGER, U. ARAUNER & H. FRANK: Twenty years of rehabilitation and management of a gravel pit lake in the vicinity of Ingolstadt, South Germany	162
GONSIORCZYK, Th., P. CASPER & P. KASPRZAK: Auswirkungen künstlicher und natürlicher Nährstoff- und Kalzitfällungen auf die Sedimentbeschaffenheit	167
HERTWECK, K., M. HUNN, A. SCHWARZ, S. SPÄTH & W. SCHMITZ: Zwerg und tierischer Schaumschläger: Selbstreinigung und Desinfektion mit "Oxi-Action" bei Plea leachi	132
HIRSCH, P. E., C. OPPELT, R. ECKMANN & J. BEHRMANN-GODEL: Phänotypische Divergenz innerhalb einer Felchenform (Coregonus spp.) –Potenzial für zukünftige Artentstehung?	12
HOHMANN, I. & P. MARTIN: Untersuchungen zur Besiedlung anthropogen beeinträchtigter Quellen in Schleswig-Holstein	67
HORN, A.: Entwicklung eines dreidimensionalen, gekoppelten Modells zur Untersuchung der Wasserqualität des Bodensees	206
JORDAN, S., TH. HINTZE, CH. ENGELHARDT, M. ROTHE, F. GOHR & M. HUPFER: Zeitlich hoch aufgelöste Sonden-Messungen im Arendsee (Sachsen-Anhalt)	83
KLEEBERG, A.: Ursachen einer periodischen Mangan-Akkumulation in Sedimenten	105
KÖPPEL. CH., R. HANSMANN & W. SCHMITZ: Modellexperimente zur Sauerstoffverteilung in limnischen Systemen	29

GESAMTVERZEICHNIS NACH ERSTAUROREN	SEITE
KUBSCH, G. & L. TÄUSCHER: Sommerkurse für Umweltchemie und Umweltanalytik	137
KUSBER, WH., S. VON MERING & J. HOLETSCHEK: Netzverfügbarkeit primärer Biodiversitätsdaten: Schritt für Schritt zur BioCASe-Anbindung limnologischer Datenquellen an das GBIF-Netzwerk	211
LAU, M., M. ROTHE, A. KLEEBERG & M. HUPFER: A 'rusty' carbon sink in freshwater systems – How excess iron promotes sediment growth	24
MARTIN, P. & L. WISCHNIOWSKY: Kalktuffquellen: Ein FFH-Lebensraum ohne Charakterarten in der Limnofauna?	72
MÜLLER, D., TH. WARNEKE, T. RIXEN, M. MÜLLER, & J. NOTHOLT: Measuring dissolved greenhouse gases in peat-draining rivers with FTIR spectroscopy	216
NEUMANN, C., A. KLEEBERG & M. HUPFER: Der Transport von partikulärem organischem Phosphor in einem geschichteten See	88
NIXDORF, B., J. RECKLEBE & G. LIPPERT: Nitrifikation im dimiktischen Scharmützelsee – Teil 1: Maximale Umsetzungen im Winter als Ökosystemdienstleistung	40
NIXDORF, B., M. NIEBISCH, G. LIPPERT & J. RECKLEBE: Nitrifikation im dimiktischen Scharmützelsee – Teil 2: Deep Nitrate Maximum als Ergebnis der sommerlichen hypolimnischen Ammoniumoxidation	45
OLDORFF, S., E. KIEL, V. KRAUTKRÄMER, K. VAN DE WEYER, J. MÄHLMANN, R. KÖHLER, J. KÖHLER, S. BERNHARD, J. BRUINSMA, TH. SCHILLER, M. EßLER & T. KIRSCHEY: Makrophytenkartierung in ausgewählten Seen Nordostdeutschlands	172
OSTENDORP, W. & J. OSTENDORP: Hydromorphologische Erfassung und Klassifikation von Seen in Brandenburg	178
REISS, M.: Mind the summit trap? Kaltstenotherme Arten und die Folgen des Klimawandels im Mittelgebirge	77
ROTHE, M., A. KLEEBERG & M. HUPFER: Authigene Vivianitbildung als Folge einer Fällung mit Eisen	110
RÜCKER, J., CH. HARRANDT & D. MIETHLING: Abschätzung von Phytoplanktonverlusten durch Muschelfiltration	51
SCHMITZ, W.: Umweltbildung interdisziplinär – Modellexperimente zur Gewässerversauerung (Experimentalvortrag)	143
SCHWEDER, H., G. HEMMER, CH. HUBER & R. WILMS: Umsiedlung einer Kreuzkröten-Population (Bufo calamita) mit Anlage eines Laichhabitates im westlichen Ruhrgebiet	220
Seibold, D., K. Schmieder, A. Kohler, E. Falusi, K. Penksza, G. H. Zeltner & U. Veit: Langzeitmonitoring der submersen Makrophyten in den Fließgewässern der Friedberger Au (bei Augsburg) im Zeitraum 1972 – 2012	183
TÄUSCHER, L.: 120 Jahre Langzeit-Untersuchungen der Besiedlung mit Algen im Großen Müggelsee (Berlin)	190
THÜRMANN, J., B. GRÜNEBERG & B. NIXDORF: Umsätze und saisonale Dynamik relevanter Stickstoffkomponenten in einem eutrophen Flachsee (Langer See, Scharmützelseegebiet) – ein Bilanzansatz	57

GESAMTVERZEICHNIS NACH ERSTAUROREN	
TROMMER, G., M. POXLEITNER, E. BITZILEKIS, A. GOGALADZE, P. LORENZ & H. STIBOR: Influence of increased nitrogen deposition on lake systems – An experimental approach	62
VOßKUHL, M. & E. KIEL: Auf dem Weg zu einer ökologischen Grabenunterhaltung in Norddeutschland!	122
WEISS, H., B. GRÜNEBERG, G. ACKERMANN & B. NIXDORF: Einfluss des Sediments auf die Trophie in sechs eutrophen sächsischen Flachstauseen	93
WOLF, TH., TH. HEEGE, K. SCHENK & HB. STICH: Raum-zeitliche Variabilität von Phytoplankton im Bodensee und kleinen Seen – die Erfassung der patchiness von Algenverteilungen mittels verschiedener Verfahren	98